Patents by Inventor Martin Jacobus Johan Jak

Martin Jacobus Johan Jak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10620550
    Abstract: A method comprising: evaluating a plurality of polarization characteristics associated with measurement of a metrology target of a substrate processed using a patterning process, against one or more measurement quality parameters; and selecting one or more polarization characteristics from the plurality of polarization characteristics based on one or more of the measurement quality parameters.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: April 14, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan Jak, Martin Ebert, Arie Jeffrey Den Boef, Nitesh Pandey
  • Publication number: 20200050114
    Abstract: An overlay metrology target (600, 900, 1000) contains a plurality of overlay gratings (932-935) formed by lithography. First diffraction signals (740(1)) are obtained from the target, and first asymmetry values (As) for the target structures are derived. Second diffraction signals (740(2)) are obtained from the target, and second asymmetry values (As?) are derived. The first and second diffraction signals are obtained using different capture conditions and/or different designs of target structures and/or bias values. The first asymmetry signals and the second asymmetry signals are used to solve equations and obtain a measurement of overlay error. The calculation of overlay error makes no assumption whether asymmetry in a given target structure results from overlay in the first direction, in a second direction or in both directions. With a suitable bias scheme the method allows overlay and other asymmetry-related properties to be measured accurately, even in the presence of two-dimensional overlay structure.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Murat Bozkurt, Maurits Van Der Schaar, Patrick Warnaar, Martin Jacobus Johan Jak, Mohammadreza Hajiahmadi, Grzegorz Grzela, Lukasz Jerzy Macht
  • Patent number: 10551308
    Abstract: An inspection apparatus includes an optical system, which has a radiation beam delivery system for delivering radiation to a target, and a radiation beam collection system for collecting radiation after scattering from the target. Both the delivery system and the collection system comprise optical components that control the characteristics of the radiation and the collected radiation. By controlling the characteristics of one or both of the radiation and collected radiation, the depth of focus of the optical system may be increased.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: February 4, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan Jak, Armand Eugene Albert Koolen, Gerbrand Van Der Zouw, Dirk Karel Margaretha Broddin
  • Patent number: 10527953
    Abstract: A method including evaluating a plurality of substrate measurement recipes for measurement of a metrology target processed using a patterning process, against stack sensitivity and overlay sensitivity, and selecting one or more substrate measurement recipes from the plurality of substrate measurement recipes that have a value of the stack sensitivity that meets or crosses a threshold and that have a value of the overlay sensitivity within a certain finite range from a maximum or minimum value of the overlay sensitivity.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 7, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Arie Jeffrey Den Boef, Martin Jacobus Johan Jak
  • Patent number: 10481506
    Abstract: An overlay metrology target (600, 900, 1000) contains a plurality of overlay gratings (932-935) formed by lithography. First diffraction signals (740(1)) are obtained from the target, and first asymmetry values (As) for the target structures are derived. Second diffraction signals (740(2)) are obtained from the target, and second asymmetry values (As?) are derived. The first and second diffraction signals are obtained using different capture conditions and/or different designs of target structures and/or bias values. The first asymmetry signals and the second asymmetry signals are used to solve equations and obtain a measurement of overlay error. The calculation of overlay error makes no assumption whether asymmetry in a given target structure results from overlay in the first direction, in a second direction or in both directions. With a suitable bias scheme the method allows overlay and other asymmetry-related properties to be measured accurately, even in the presence of two-dimensional overlay structure.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: November 19, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Murat Bozkurt, Maurits Van Der Schaar, Patrick Warnaar, Martin Jacobus Johan Jak, Mohammadreza Hajiahmadi, Grzegorz Grzela, Lukasz Jerzy Macht
  • Publication number: 20190346256
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 14, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria VAN BUEL, Christophe David FOUQUET, Hendrik Jan Hidde SMILDE, Maurits VAN DER SCHAAR, Arie Jeffrey DEN BOEF, Richard Johannes Franciscus VAN HAREN, Xing Lan LIU, Johannes Marcus Maria BELTMAN, Andreas FUCHS, Orner Abubaker Orner ADAM, Michael KUBIS, Martin Jacobus Johan JAK
  • Publication number: 20190285993
    Abstract: Methods and apparatuses for measuring a plurality of structures formed on a substrate are disclosed. In one arrangement, a method includes obtaining data from a first measurement process. The first measurement process including individually measuring each of the plurality of structures to measure a first property of the structure. A second measurement process is used to measure a second property of each of the plurality of structures. The second measurement process includes illuminating each structure with radiation having a radiation property that is individually selected for that structure using the measured first property for the structure.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Nitesh PANDEY, Jin LIAN, Samee Ur REHMAN, Martin Jacobus Johan JAK
  • Publication number: 20190265028
    Abstract: Disclosed is a method and associated apparatus for measuring a characteristic of interest relating to a structure on a substrate. The method comprises calculating a value for the characteristic of interest directly from the effect of the characteristic of interest on at least the phase of illuminating radiation when scattered by the structure, subsequent to illuminating said structure with said illuminating radiation.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 29, 2019
    Applicants: Stichting VU, Stichting Nederlandse Wetenschappelijk Onderzoek Instituten, Universiteit van Amsterdam, ASML Netherlands B.V.
    Inventors: Patricius Aloysius Jacobus TINNEMANS, Vasco Tomas Tenner, Arie Jeffrey Den Boef, Hugo Augustinus Joseph Cramer, Patrick Warnaar, Grzegorz Grzela, Martin Jacobus Johan Jak
  • Patent number: 10386176
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: August 20, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 10379445
    Abstract: A method, involving illuminating at least a first periodic structure of a metrology target with a first radiation beam having a first polarization, illuminating at least a second periodic structure of the metrology target with a second radiation beam having a second different polarization, combining radiation diffracted from the first periodic structure with radiation diffracted from the second periodic structure to cause interference, detecting the combined radiation using a detector, and determining a parameter of interest from the detected combined radiation.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: August 13, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan Jak, Arie Jeffrey Den Boef, Martin Ebert
  • Patent number: 10338401
    Abstract: In an illumination system (12, 13) for a scatterometer, first and second spatial light modulators lie in a common plane and are formed by different portions of a single liquid crystal cell (260). Pre-polarizers (250) apply polarization to first and second radiation prior to the spatial light modulators. A first spatial light modulator (236-S) varies a polarization state of the first radiation in accordance with a first programmable pattern. Second spatial light modulator (236-P) varies a polarization state of the second radiation accordance with a second programmable pattern. A polarizing beam splitter (234) selectively transmits each of the spatially modulated first and second radiation to a common output path, depending on the polarization state of the radiation. In an embodiment, functions of pre-polarizers are performed by the polarizing beam splitter.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: July 2, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Gerbrand Van Der Zouw, Martin Jacobus Johan Jak, Martin Ebert
  • Patent number: 10310389
    Abstract: Methods and apparatuses for measuring a plurality of structures formed on a substrate are disclosed. In one arrangement, a method includes obtaining data from a first measurement process. The first measurement process including individually measuring each of the plurality of structures to measure a first property of the structure. A second measurement process is used to measure a second property of each of the plurality of structures. The second measurement process includes illuminating each structure with radiation having a radiation property that is individually selected for that structure using the measured first property for the structure.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: June 4, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Nitesh Pandey, Jin Lian, Samee Ur Rehman, Martin Jacobus Johan Jak
  • Publication number: 20190165543
    Abstract: A laser-based light source includes a laser device configured to generate laser light of a predetermined laser wavelength and emit this laser light as a laser beam. A light-conversion device is configured to convert at least part of the laser light into converted light and a laser-output sensor is configured to determine a laser-output signal proportional to the output of laser light emitted by the laser device. Further, a converted-light sensor is configured to determine a converted-light signal proportional to the output of converted light emitted by the light-conversion device. A controller is configured to receive the laser-output signal and the converted-light signal, to determine a safe-to-operate parameter, based on the laser-output signal and the converted-light signal, and to control the operation of the laser-based light source based on a comparison of the safe-to-operate parameter with a at least one predefined threshold.
    Type: Application
    Filed: January 31, 2019
    Publication date: May 30, 2019
    Inventors: MARCELLINUS PETRUS CAROLUS MICHAEL KRIJN, MARTIN JACOBUS JOHAN JAK
  • Patent number: 10289008
    Abstract: An overlay measurement (OV) is based on asymmetry in a diffraction spectrum of target structures formed by a lithographic process. Stack difference between target structures can be perceived as grating imbalance (GI), and the accuracy of the overlay measurement may be degraded. A method of predicting GI sensitivity is performed using first and second images (45+, 45?) of the target structure using opposite diffraction orders. Regions (ROI) of the same images are used to measure overlay. Multiple local measurements of symmetry (S) and asymmetry (A) of intensity between the opposite diffraction orders are made, each local measurement of symmetry and asymmetry corresponding to a particular location on the target structure. Based on a statistical analysis of the local measurements of symmetry and asymmetry values, a prediction of sensitivity to grating imbalance is obtained. This can be used to select better measurement recipes, and/or to correct errors caused by grating imbalance.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: May 14, 2019
    Assignee: ASML Netherlands B.V.
    Inventor: Martin Jacobus Johan Jak
  • Publication number: 20190094703
    Abstract: A method to determine a patterning process parameter, the method comprising: for a target, calculating a first value for an intermediate parameter from data obtained by illuminating the target with radiation comprising a central wavelength; for the target, calculating a second value for the intermediate parameter from data obtained by illuminating the target with radiation comprising two different central wavelengths; and calculating a combined measurement for the patterning process parameter based on the first and second values for the intermediate parameter.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 28, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan JAK, Simon Gijsbert Josephus MATHIJSSEN, Kaustuve BHATTACHARYYA, Won-Jae JANG, Jinmoo BYUN
  • Publication number: 20190079413
    Abstract: An apparatus and method for estimating a parameter of a lithographic process and an apparatus and method for determining a relationship between a measure of quality of an estimate of a parameter of a lithographic process are provided. In the apparatus for estimating the parameter a processor is configured to determine a quality of the estimate of the parameter relating to the tested substrate based on a measure of feature asymmetry in the at least first features of the tested substrate and further based on a relationship determined for a plurality of corresponding at least first features of at least one further substrate representative of the tested substrate, the relationship being between a measure of quality of an estimate of the parameter relating to the at least one further substrate and a measure of feature asymmetry in the corresponding first features.
    Type: Application
    Filed: August 21, 2018
    Publication date: March 14, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Simon Gijsbert Josephus MATHIJSSEN, Martin Jacobus Johan JAK, Kaustuve BHATTACHARYYA
  • Publication number: 20190072859
    Abstract: A method comprising: evaluating a plurality of polarization characteristics associated with measurement of a metrology target of a substrate processed using a patterning process, against one or more measurement quality parameters; and selecting one or more polarization characteristics from the plurality of polarization characteristics based on one or more of the measurement quality parameters
    Type: Application
    Filed: August 30, 2018
    Publication date: March 7, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan JAK, Martin EBERT, Arie Jeffrey DEN BOEF, Nitesh PANDEY
  • Publication number: 20190064677
    Abstract: A method, involving illuminating at least a first periodic structure of a metrology target with a first radiation beam having a first polarization, illuminating at least a second periodic structure of the metrology target with a second radiation beam having a second different polarization, combining radiation diffracted from the first periodic structure with radiation diffracted from the second periodic structure to cause interference, detecting the combined radiation using a detector, and determining a parameter of interest from the detected combined radiation.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Martin Jacobus Johan Jak, Arie Jeffrey den Boef, Martin Ebert
  • Patent number: 10162272
    Abstract: A substrate has a plurality of overlay gratings formed thereon by a lithographic process. Each overlay grating has a known overlay bias. The values of overlay bias include for example two values in a region centered on zero and two values in a region centered on P/2, where P is the pitch of the gratings. Overlay is calculated from asymmetry measurements for the gratings using knowledge of the different overlay bias values, each of the overall asymmetry measurements being weighted by a corresponding weight factor. Each one of the weight factors represents a measure of feature asymmetry within the respective overlay grating. The calculation is used to improve subsequent performance of the measurement process, and/or the lithographic process. Some of the asymmetry measurements may additionally be weighted by a second weight factor in order to eliminate or reduce the contribution of phase asymmetry to the overlay.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 25, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan Jak, Hendrik Jan Hidde Smilde, Te-Chih Huang, Victor Emanuel Calado, Henricus Wilhelmus Maria Van Buel, Richard Johannes Franciscus Van Haren
  • Publication number: 20180364036
    Abstract: A method of determining an edge roughness parameter has the steps: (1010) controlling a radiation system to provide a spot of radiation at a measurement position for receiving a substrate; (1020) receiving a measurement signal from a sensor for measuring intensity of a forbidden diffraction order (such as a second order) being diffracted by a metrology target at the measurement position when the metrology target is illuminated by the spot of radiation, the metrology target comprising a repetitive pattern being configured by configuration of a linewidth/pitch ratio (of about 0.5) to control an amount of destructive interference that leads to forbidding of the diffraction order, the sensor being configured to provide the measurement signal based on the measured intensity; and (1040) determining an edge roughness parameter based on the measured intensity of the forbidden diffraction order.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 20, 2018
    Applicant: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan JAK, Richard Quintanilha, Arie Jeffrey Den Boef, Michael Kubis