Patents by Inventor Masanori Nakayama

Masanori Nakayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11145491
    Abstract: Described herein is a technique capable of suppressing variations or deterioration in a processing rate between a plurality of substrates due to temperature. According to one aspect of the technique of the present disclosure, there is provided a substrate processing apparatus including: a process vessel constituting at least a part of a process chamber where a substrate is processed; a plasma generator comprising a coil provided to be wound around an outer periphery of the process vessel and a high frequency power supply configured to supply high frequency power to the coil; a substrate support provided in the process chamber and below a lower end of the coil; a heater provided in the substrate support; and a temperature sensor configured to measure a temperature of a portion of the process vessel located above an upper end of the coil.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: October 12, 2021
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masaki Murobayashi, Koichiro Harada, Hiroto Igawa, Teruo Yoshino, Masanori Nakayama
  • Publication number: 20210305045
    Abstract: Described herein is a technique capable of capable of improving characteristics of an oxide film formed on a substrate in a process of modifying the oxide film. According to one aspect of the technique, there is provided a method of manufacturing a semiconductor device, including: modifying an oxide film formed on a substrate by performing: (a) supplying a reactive species containing an element of a rare gas generated by converting a gas containing the rare gas into a plasma state to the oxide film; and (b) after (a), supplying a reactive species containing oxygen generated by converting an oxygen-containing gas different from the gas containing the rare gas into a plasma state to the oxide film.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 30, 2021
    Inventors: Tatsushi UEDA, Tadashi TERASAKI, Masanori NAKAYAMA, Yasutoshi TSUBOTA, Yuki YAMAKADO, Hiroki KISHIMOTO
  • Patent number: 11081362
    Abstract: There is provided a technique that includes: (a) loading a substrate including a base and a first film containing silicon and formed on the base into a process container; (b) converting a modifying gas containing helium into plasma to generate reactive species of helium; and (c) supplying the modifying gas containing the reactive species of helium to a surface of the substrate to respectively modify the first film and an interface layer of the base constituting an interface with the first film.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: August 3, 2021
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yuki Yamakado, Masanori Nakayama, Katsunori Funaki, Tatsushi Ueda, Yasutoshi Tsubota, Eiko Takami, Yuichiro Takeshima, Hiroto Igawa
  • Publication number: 20210183645
    Abstract: According to one aspect of the technique, there is provided a method of manufacturing a semiconductor device, including: (a) forming a first oxide layer by modifying a surface of a substrate at a first temperature with a plasma of a first oxygen-containing gas; and (b) forming a second oxide layer thicker than the first oxide layer by heating the substrate to a second temperature higher than the first temperature and modifying the surface of the substrate, on which the first oxide layer is formed, with a plasma of a second oxygen-containing gas.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: Hiroto IGAWA, Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Eiko TAKAMI, Yuichiro TAKESHIMA, Yuki YAMAKADO
  • Patent number: 10910214
    Abstract: A method of manufacturing a semiconductor device includes: providing a substrate that includes a surface exposing a first film containing silicon, oxygen, carbon and nitrogen and having an oxygen atom concentration higher than a silicon atom concentration, which is higher than a carbon atom concentration, which is equal to or higher than a nitrogen atom concentration; and changing a composition of a surface of the first film so that the nitrogen atom concentration becomes higher than the carbon atom concentration on the surface of the first film, by supplying a plasma-excited nitrogen-containing gas to the surface of the first film.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: February 2, 2021
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yoshitomo Hashimoto, Masanori Nakayama, Masaya Nagato, Tatsuru Matsuoka, Hiroki Tamashita, Takafumi Nitta, Satoshi Shimamoto
  • Patent number: 10796900
    Abstract: Described herein is a technique capable of improving electrical characteristics of a semiconductor device. According to the technique, there is provided a method of manufacturing a semiconductor device including: (a) generating oxygen and hydrogen active species; and (b) forming an oxide layer by supplying the oxygen and hydrogen active species to a substrate with a concave structure to subject a film on an inner surface of the concave structure to oxidation, wherein the oxide layer is formed in (b) such that a thickness of the oxide layer is greater on the inner surface than at an upper end portion of the concave structure by setting a ratio of a flow rate of the hydrogen active species to a total flow rate to a predetermined ratio greater than a first ratio at which a rate of forming the oxide layer is maximized at the upper end portion of the concave structure.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: October 6, 2020
    Assignee: Kokusai Electric Corporation
    Inventors: Yuichiro Takeshima, Masanori Nakayama, Katsunori Funaki, Yasutoshi Tsubota, Hiroto Igawa
  • Publication number: 20200257269
    Abstract: There is provided a substrate processing system, including: a plurality of substrate processing apparatuses; a first control part installed in each of the plurality of substrate processing apparatuses and configured to transmit a first apparatus data from each of the plurality of substrate processing apparatuses; a second control part configured to receive the first apparatus data from each of the plurality of substrate processing apparatuses, generate a priority data of each of the plurality of substrate processing apparatuses based on the first apparatus data, and transmit the priority data to the first control part; and a display part configured to display the priority data thereon.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masanori NAKAYAMA, Tsukasa KAMAKURA
  • Publication number: 20200211858
    Abstract: There is provided a technique that includes: loading a substrate having a metal film composed of a single metal element formed on a surface of the substrate into a process chamber; generating reactive species by plasma-exciting a processing gas containing hydrogen and oxygen; and modifying the metal film by supplying the reactive species to the substrate, wherein in the act of modifying the metal film, the metal film is modified such that a crystal grain size of the metal element constituting the metal film is larger than that before performing the act of modifying the metal film.
    Type: Application
    Filed: March 12, 2020
    Publication date: July 2, 2020
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Yuichiro TAKESHIMA, Hiroto IGAWA, Yuki YAMAKADO
  • Patent number: 10671056
    Abstract: There is provided a substrate processing system, including: a plurality of substrate processing apparatuses; a first control part installed in each of the plurality of substrate processing apparatuses and configured to transmit a first apparatus data from each of the plurality of substrate processing apparatuses; a second control part configured to receive the first apparatus data from each of the plurality of substrate processing apparatuses, generate a priority data of each of the plurality of substrate processing apparatuses based on the first apparatus data, and transmit the priority data to the first control part; and a display part configured to display the priority data thereon.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: June 2, 2020
    Assignee: Kokusai Electric Corporation
    Inventors: Masanori Nakayama, Tsukasa Kamakura
  • Publication number: 20200168434
    Abstract: Described herein is a technique capable of suppressing variations or deterioration in a processing rate between a plurality of substrates due to temperature. According to one aspect of the technique of the present disclosure, there is provided a substrate processing apparatus including: a process vessel constituting at least a part of a process chamber where a substrate is processed; a plasma generator comprising a coil provided to be wound around an outer periphery of the process vessel and a high frequency power supply configured to supply high frequency power to the coil; a substrate support provided in the process chamber and below a lower end of the coil; a heater provided in the substrate support; and a temperature sensor configured to measure a temperature of a portion of the process vessel located above an upper end of the coil.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masaki MUROBAYASHI, Koichiro HARADA, Hiroto IGAWA, Teruo YOSHINO, Masanori NAKAYAMA
  • Publication number: 20200098587
    Abstract: There is provided a technique that includes: (a) loading a substrate including a base and a first film containing silicon and formed on the base into a process container; (b) converting a modifying gas containing helium into plasma to generate reactive species of helium; and (c) supplying the modifying gas containing the reactive species of helium to a surface of the substrate to respectively modify the first film and an interface layer of the base constituting an interface with the first film.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 26, 2020
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yuki YAMAKADO, Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Eiko TAKAMI, Yuichiro TAKESHIMA, Hiroto IGAWA
  • Publication number: 20190355575
    Abstract: Described herein is a technique capable of improving electrical characteristics of a semiconductor device. According to the technique, there is provided a method of manufacturing a semiconductor device including: (a) generating oxygen and hydrogen active species; and (b) forming an oxide layer by supplying the oxygen and hydrogen active species to a substrate with a concave structure to subject a film on an inner surface of the concave structure to oxidation, wherein the oxide layer is formed in (b) such that a thickness of the oxide layer is greater on the inner surface than at an upper end portion of the concave structure by setting a ratio of a flow rate of the hydrogen active species to a total flow rate to a predetermined ratio greater than a first ratio at which a rate of forming the oxide layer is maximized at the upper end portion of the concave structure.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 21, 2019
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yuichiro TAKESHIMA, Masanori NAKAYAMA, Katsunori FUNAKI, Yasutoshi TSUBOTA, Hiroto IGAWA
  • Publication number: 20190348282
    Abstract: According to one aspect of the technique of the present disclosure, there is provided a method of manufacturing a semiconductor device including: (a) providing a semiconductor processing apparatus including a substrate process chamber, a coil and a substrate support; (b) placing a target substrate with a concave structure of a silicon film on a substrate support, wherein a deteriorated layer is formed on an inner surface of the concave structure by deterioration of a surface layer of the silicon film due to an etching process; (c) supplying an oxygen-containing gas into the substrate process chamber; (d) applying a high frequency power to the coil to generate plasma of the oxygen-containing gas; and (e) oxidizing, by the plasma, a surface of the silicon film exposed in the concave structure wherein the deteriorated layer is formed on the surface.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Inventors: Yuichiro TAKESHIMA, Masanori NAKAYAMA, Katsunori FUNAKI, Yasutoshi TSUBOTA, Hiroto IGAWA
  • Patent number: 10453676
    Abstract: A method of manufacturing a semiconductor device includes: preparing a substrate processing apparatus including a substrate process chamber having a plasma-generation space where a nitrogen-containing gas is plasma-exited and a process space where a substrate is mounted in communication with the plasma-generation space, an inductive coupling structure configured by a coil and an impedance matching circuit, wherein electric field combining the coil and the circuit has a length of an integer multiple of a wavelength of an high-frequency power, and a table to mount the substrate under a lower end of the coil; mounting the substrate on the table; supplying the nitrogen-containing gas into the chamber; starting a plasma excitation of the nitrogen-containing gas by applying the high-frequency power to the coil; and nitriding a surface of the substrate with active species containing a nitrogen element at an internal pressure of the chamber ranging from 1 to 100 Pa.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: October 22, 2019
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventor: Masanori Nakayama
  • Patent number: 10355098
    Abstract: The present invention provides a technology capable of removing impurities remaining in a thin film when the film is formed and modifying a characteristic of the thin film according to a change in impurity concentration. There is provided a method of manufacturing a semiconductor device including: (a) repetitively supplying a plurality of gases including elements constituting a film in temporally separated pulses (in non-simultaneous manner) to form the film on the substrate; and (b) exciting a modifying gas including a reducing gas and at least one of a nitriding gas and an oxidizing gas by plasma and supplying the modifying gas excited by plasma to modify the film.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: July 16, 2019
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Motomu Degai, Masanori Nakayama, Kazuhiro Harada, Masahito Kitamura
  • Publication number: 20190032217
    Abstract: A method of manufacturing a semiconductor device includes: loading a substrate into a substrate process chamber having a plasma generation space in which a processing gas is plasma-excited and a substrate process space communicating with the plasma generation space; mounting the substrate on a substrate mounting table installed inside the substrate process space; adjusting a height of the substrate mounting table so that the substrate is located at a height lower than a lower end of a coil, the coil configured to wind around an outer periphery of the plasma generation space so as to have a diameter larger than a diameter of the substrate; supplying the processing gas to the plasma generation space; plasma-exciting the processing gas supplied to the plasma generation space by supplying a high-frequency power to the coil to resonate the coil; and processing the substrate mounted on the substrate mounting table by the plasma-excitation.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 31, 2019
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Teruo YOSHINO, Takeshi YASUI, Masaki MUROBAYASHI, Koichiro HARADA, Tadashi TERASAKI, Masanori NAKAYAMA
  • Publication number: 20190025799
    Abstract: There is provided a substrate processing system, including: a plurality of substrate processing apparatuses; a first control part installed in each of the plurality of substrate processing apparatuses and configured to transmit a first apparatus data from each of the plurality of substrate processing apparatuses; a second control part configured to receive the first apparatus data from each of the plurality of substrate processing apparatuses, generate a priority data of each of the plurality of substrate processing apparatuses based on the first apparatus data, and transmit the priority data to the first control part; and a display part configured to display the priority data thereon.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 24, 2019
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Masanori NAKAYAMA, Tsukasa KAMAKURA
  • Publication number: 20190006481
    Abstract: Described herein is a technique capable of improving electrical characteristics of a polysilicon film while suppressing damage to an underlying silicon oxide film. According to the technique described herein, there is provided a there is provided a method of manufacturing a semiconductor device, including: (a) preparing a substrate including a silicon oxide film and a polysilicon film formed on the silicon oxide film, wherein the polysilicon film includes a contact surface contacting the silicon oxide film and an exposed surface facing the contact surface; and (b) supplying a reactive species generated by plasma excitation of a gas containing hydrogen and oxygen to the exposed surface of the polysilicon film.
    Type: Application
    Filed: September 7, 2018
    Publication date: January 3, 2019
    Inventors: Masanori NAKAYAMA, Yuichiro TAKESHIMA, Hiroto IGAWA, Katsunori FUNAKI
  • Publication number: 20180337031
    Abstract: A method of manufacturing a semiconductor device includes: providing a substrate that includes a surface exposing a first film containing silicon, oxygen, carbon and nitrogen and having an oxygen atom concentration higher than a silicon atom concentration, which is higher than a carbon atom concentration, which is equal to or higher than a nitrogen atom concentration; and changing a composition of a surface of the first film so that the nitrogen atom concentration becomes higher than the carbon atom concentration on the surface of the first film, by supplying a plasma-excited nitrogen-containing gas to the surface of the first film.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 22, 2018
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Yoshitomo HASHIMOTO, Masanori NAKAYAMA, Masaya NAGATO, Tatsuru MATSUOKA, Hiroki YAMASHITA, Takafumi NITTA, Satoshi SHIMAMOTO
  • Patent number: 10090322
    Abstract: A method of manufacturing a semiconductor device, includes: loading a substrate including a laminated film including an insulating film and a sacrificial film, a channel hole formed in the laminated film, a charge trapping film formed on a surface in the channel hole, a first channel film formed on a surface of the charge trapping film, and a common source line exposed on the bottom of the channel hole; receiving information on a distribution of hole diameter of the channel hole; and forming a second channel film on a surface of the first channel film by supplying a first processing gas and a second processing gas to a center side and an outer peripheral side of the substrate, respectively, so as to correct the distribution of the hole diameter based on the information.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: October 2, 2018
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Satoshi Shimamoto, Toshiyuki Kikuchi, Atsushi Moriya, Masanori Nakayama, Takashi Nakagawa