Patents by Inventor Masateru Taniguchi

Masateru Taniguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133790
    Abstract: An object is to provide a device that can measure a moving time (velocity) of a single particle with high accuracy, and an ion current measuring apparatus and a zeta potential measuring apparatus with the device, and an ion current measuring method and a zeta potential measuring method. The object can be achieved by a device used for measurement of ion current, the device including: a substrate; and a channel formed in the substrate. The channel includes a sample liquid supply channel, a sample collection channel, and constricted channel formed between the sample liquid supply channel and the sample collection channel. The constricted channel includes three or more constricted parts each formed with a protrusion part, the three or more constricted parts are formed substantially straight in a direction from the sample liquid supply channel to the sample collection channel, and when the width of each of the constricted parts is defined as 1, the spacing between adjacent constricted parts is 0.5 to 3.
    Type: Application
    Filed: February 8, 2022
    Publication date: April 25, 2024
    Inventors: Makusu TSUTSUI, Shohei KISHIMOTO, Masateru TANIGUCHI
  • Patent number: 11781099
    Abstract: A number analyzing method, a number analyzing device, and a storage medium for number analysis are disclosed, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device in accordance with passage of subject particles through a through-hole. Also, a particle type distribution estimating program is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: October 10, 2023
    Assignee: AIPORE INC.
    Inventors: Takashi Washio, Tomoji Kawai, Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Akira Ishi, Takeshi Yoshida
  • Publication number: 20230194472
    Abstract: The present disclosure provides a method for analyzing a microRNA using a tunneling current. The present disclosure provides a method for identifying the base sequence and/or modification state of a microRNA using a tunneling current, and a system and a program to be used in the method. Furthermore, the present disclosure provides a method for analyzing the conditions of a subject, said method comprising determining the base sequence and/or modification state of a microRNA using a tunneling current. For example, methylation modification can be analyzed thereby.
    Type: Application
    Filed: April 24, 2020
    Publication date: June 22, 2023
    Inventors: Masateru Taniguchi, Hideshi Ishii, Takahito Ohshiro, Masamitsu Konno
  • Publication number: 20230159870
    Abstract: A number analyzing method, a number analyzing device, and a storage medium for number analysis are disclosed, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device in accordance with passage of subject particles through a through-hole. Also, a particle type distribution estimating program is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 25, 2023
    Applicant: AIPORE INC.
    Inventors: Takashi WASHIO, Tomoji KAWAI, Masateru TANIGUCHI, Makusu TSUTSUI, Kazumichi YOKOTA, Akira ISHI, Takeshi YOSHIDA
  • Patent number: 11597898
    Abstract: A number analyzing method, a number analyzing device, and a storage medium for number analysis are disclosed, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device in accordance with passage of subject particles through a through-hole. Also, a particle type distribution estimating program is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 7, 2023
    Assignee: AIPORE INC.
    Inventors: Takashi Washio, Tomoji Kawai, Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Akira Ishii, Takeshi Yoshida
  • Publication number: 20230014662
    Abstract: Provided is a quantum computer which makes it possible to easily carry out quantum calculation. A quantum computer (10) includes electrodes (20) and (21), a molecule (22) that is entirely or partially provided between the electrodes (20) and (21), and a current sensor 13 that detects a tunneling current which flows between the electrodes (20) and (21) via the molecule (22). The molecule (22) works as a quantum circuit for carrying out quantum calculation.
    Type: Application
    Filed: December 21, 2020
    Publication date: January 19, 2023
    Inventors: Masateru TANIGUCHI, Tomofumi TADA
  • Patent number: 11524295
    Abstract: Provided is a channel device that is capable of increasing the concentration of fine particles in a liquid only by use of fluid-dynamic flows without relying on electrostatic interactions. A channel device (1) in accordance with an embodiment of the present invention includes: a main channel (11) configured to allow a liquid containing fine particles to flow therethrough; a chamber (15) that is provided at an end of the main channel (11) and that is configured to store target fine particles which have increased in concentration; and a side channel (12) that is connected to a side face of the main channel (11) and that is configured to allow unwanted liquid to drain therethrough, wherein at least one of a height and a width of the side channel (12) is smaller than a particle size of the fine particles.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: December 13, 2022
    Assignee: AIPORE INC.
    Inventors: Wataru Tonomura, Makusu Tsutsui, Kazumichi Yokota, Akihide Arima, Masateru Taniguchi, Tomoji Kawai
  • Publication number: 20220283110
    Abstract: Provided is a device that facilitates a sample to enter a sample measurement channel in which measuring electrodes are arranged. A device used in measurement of tunnel current includes: a base material; a channel formed in the base material; and a pair of measuring electrodes for measuring tunnel current occurring when a sample passes between the pair of measuring electrodes. The channel includes a sample supply channel, a sample measurement channel in which the measuring electrodes are arranged, a first taper channel arranged between the sample supply channel and the sample measurement channel and having a channel width that decreases from the sample supply channel to the sample measurement channel, and a sample collection channel used for collecting a sample that passed through the sample measurement channel. The width of a connection part between the first taper channel and the sample measurement channel is 20 nm to 200 nm.
    Type: Application
    Filed: March 3, 2022
    Publication date: September 8, 2022
    Inventors: Takahito OHSHIRO, Masateru TANIGUCHI, Yuki KOMOTO
  • Publication number: 20220187244
    Abstract: A current measurement method for measuring a tunneling current in biopolymers passing through between a pair of electrodes includes arranging the electrodes in a liquid that contains an electrolyte and, while applying a voltage between the electrodes, measuring a current flowing between the electrodes via an electric double layer formed along surfaces of the electrodes. This enables measuring the current in consideration of the electric double layer. As a result, it is possible to more accurately measure the tunneling current in the biopolymers included in a liquid sample that contains an electrolyte.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 16, 2022
    Inventors: Masateru TANIGUCHI, Takahito OHSHIRO, Masakazu SANADA, Tadashi MIYAGI
  • Patent number: 11307161
    Abstract: It is an object to improve detection accuracy of an object as compared with prior arts. A flow passage (10) provided in a detection device (10) includes a substrate (1) and a covering member (2) provided at a position corresponding to the substrate (1). A covering member opening (HL2) of the covering member (2) is provided such that a substrate opening (HL1) of the substrate (1) is not covered with the covering member (2). The covering member (2) is arranged onto the substrate (1) such that a substrate capacitance and a covering member capacitance are connected in series. The covering member capacitance is lower than the substrate capacitance.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: April 19, 2022
    Assignee: Aipore Inc.
    Inventors: Makusu Tsutsui, Kazumichi Yokota, Akihide Arima, Wataru Tonomura, Masateru Taniguchi, Takashi Washio, Tomoji Kawai
  • Publication number: 20210285911
    Abstract: Provided are a virus measuring method, a virus measuring device, a virus determining program, a stress determining method, and a stress determining device. A virus measuring method includes a contact step of bringing a liquid specimen containing a body fluid of a subject and an electrolytic solution into contact with each other via a through-hole portion formed in a separating wall, a current measuring step of applying a voltage to the liquid specimen and the electrolytic solution with respect to the through-hole portion and obtaining a waveform of an ionic current flowing through the through-hole portion, and a virus determining step of determining the kind of a virus contained in the body fluid on the basis of the waveform. In the virus determining step, the kind of the virus is determined by comparing the waveform with waveform information that corresponds to a known virus and is obtained beforehand.
    Type: Application
    Filed: July 18, 2019
    Publication date: September 16, 2021
    Applicant: OSAKA UNIVERSITY
    Inventors: Kohji NISHIDA, Noriyasu HASHIDA, Masateru TANIGUCHI, Makusu TSUTSUI
  • Publication number: 20210270762
    Abstract: It is an object to improve detection accuracy of an object as compared with prior arts. A flow passage (10) provided in a detection device (10) includes a substrate (1) and a covering member (2) provided at a position corresponding to the substrate (1). A covering member opening (HL2) of the covering member (2) is provided such that a substrate opening (HL1) of the substrate (1) is not covered with the covering member (2). The covering member (2) is arranged onto the substrate (1) such that a substrate capacitance and a covering member capacitance are connected in series. The covering member capacitance is lower than the substrate capacitance.
    Type: Application
    Filed: July 10, 2019
    Publication date: September 2, 2021
    Inventors: Makusu Tsutsui, Kazumichi Yokota, Akihide Arima, Wataru Tonomura, Masateru Taniguchi, Takashi Washio, Tomoji Kawai
  • Publication number: 20210232870
    Abstract: A PU classification device includes a classifier that performs maximum likelihood classification of an instance to be classified as a positive instance or a negative instance based on a magnitude relationship between a first probability that the instance is sampled from a population distribution for learning as the positive instance and a second probability that the instance is sampled from the population distribution for learning, when the instance to be classified is given, and a processor that learns the classifier by estimating a distribution function of the first probability from a set of positive instances sampled from the population distribution for learning and by estimating a distribution function of the second probability from a set of instances that are sampled from the population distribution for learning and are unknown whether they are positive or negative, wherein an instance to be classified is classified as the positive instance or the negative instance by using the classifier learned by the
    Type: Application
    Filed: March 28, 2019
    Publication date: July 29, 2021
    Inventors: Takashi Washio, Masateru Taniguchi, Takahito Ohshiro, Takeshi Yoshida
  • Publication number: 20210140938
    Abstract: The present invention provides an identification method by which appropriately identifies nonconforming data from a measurement data set, for example, contributes to improve the reliability of measurement results by the advanced sensing device, a classification analysis method which can perform the classification analysis with high accuracy for the measurement data, an identification device, a classification analysis device, a storage medium for identification and a storage medium for classification analysis. A feature value is obtained in advance which indicates the feature of waveform of pulse signal, and the feature value obtained is set as the learning data for machine learning.
    Type: Application
    Filed: April 9, 2018
    Publication date: May 13, 2021
    Applicant: AIPORE INC.
    Inventors: Takashi WASHIO, Masateru TANIGUCHI, Takahito OHSHIRO, Takeshi YOSHIDA, Takayuki TAKAAI
  • Patent number: 10876159
    Abstract: The present invention provides technology that uses current measurements to identify nucleotides and determine a nucleotide sequence in polynucleotides. The present invention calculates a modal value of a tunnel current that arises when a nucleotide or polynucleotide for analysis passes through between electrodes, and then employs the calculated modal value. The present invention accordingly enables direct rapid implementation to identify nucleotides and to determine a nucleotide sequence in a polynucleotide without marking.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: December 29, 2020
    Assignee: QUANTUM BIOSYSTEMS INC.
    Inventors: Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Tomoji Kawai
  • Patent number: 10877021
    Abstract: A device for biological material detection includes a substrate; a through-hole through which a biological material to be tested passes, the through-hole being formed in the substrate; a molecule that interacts with the biological material to be tested passing through, the molecule being formed in the through-hole; a first chamber member that forms, with at least the surface including the through-hole on one surface side of the substrate, a first chamber to be filled with electrolyte; and a second chamber member that forms, with at least the surface including the through-hole on the other surface side of the substrate, a second chamber to be filled with electrolyte. The biological material to be tested is identified by the waveform of the ion current (passage time, shape, etc.) when the biological material to be tested passes through the through-hole.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: December 29, 2020
    Assignees: OSAKA UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION TOKYO MEDICAL AND DENTAL UNIVERSITY
    Inventors: Makusu Tsutsui, Kazumichi Yokota, Masateru Taniguchi, Tomoji Kawai, Mina Okochi, Masayoshi Tanaka, Yoshinobu Baba, Noritada Kaji, Takao Yasui, Yuji Miyahara, Yukichi Horiguchi
  • Publication number: 20200251184
    Abstract: The present invention provides a classification analysis method, a classification analysis device, and a storage medium for classification analysis, which enable, with high accuracy, the classification analysis of particulate or molecular analytes. As a means for solving the problem, a data group of particle-passage detection signals is based which are detected by a nanopore device 8 in accordance with passage of subject particles through a through-hole 12. A feature value is obtained in advance which indicates the feature of the waveform of the pulse signals corresponding to the passage of the predetermined analyte and the feature value obtained in advance is set as the learning data for the machine learning. The feature value obtained from the pulse signals of said analyzed data is set as a variable and the classification analysis on the predetermined analytes in the analyzed data can be performed by executing a classification analysis program due to the machine learning.
    Type: Application
    Filed: December 12, 2017
    Publication date: August 6, 2020
    Applicant: Osaka University
    Inventors: Takashi WASHIO, Tomoji KAWAI, Masateru TANIGUCHI, Makusu TSUTSUI, Kazumichi YOKOTA, Akira ISHI, Takeshi YOSHIDA
  • Publication number: 20200070169
    Abstract: Provided is a channel device that is capable of increasing the concentration of fine particles in a liquid only by use of fluid-dynamic flows without relying on electrostatic interactions. A channel device (1) in accordance with an embodiment of the present invention includes: a main channel (11) configured to allow a liquid containing fine particles to flow therethrough; a chamber (15) that is provided at an end of the main channel (11) and that is configured to store target fine particles which have increased in concentration; and a side channel (12) that is connected to a side face of the main channel (11) and that is configured to allow unwanted liquid to drain therethrough, wherein at least one of a height and a width of the side channel (12) is smaller than a particle size of the fine particles.
    Type: Application
    Filed: May 9, 2018
    Publication date: March 5, 2020
    Inventors: Wataru TONOMURA, Makusu TSUTSUI, Kazumichi YOKOTA, Akihide ARIMA, Masateru TANIGUCHI, Tomoji KAWAI
  • Patent number: 10557167
    Abstract: Devices, systems and methods for sequencing protein samples are provided. In some examples, currents generated when a monomer passes through between electrodes of a nanogap electrode pair are measured for each of several different distances, so that monomers are identified when compared to a reference physical quantity of a known monomer, which may be obtained from a current measured with a similar inter-electrode distance(s) at which each of plural kinds of monomers are identifiable and ordered with predetermined accuracy and based on a detected physical quantity obtained from a tunneling current, which may be further normalized by the use of one or more reference substances.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: February 11, 2020
    Assignee: QUANTUM BIOSYSTEMS INC.
    Inventors: Tomoji Kawai, Masateru Taniguchi, Takahito Ohshiro, Mark Oldham, Eric Nordman
  • Publication number: 20190367979
    Abstract: The present invention provides technology that uses current measurements to identify nucleotides and determine a nucleotide sequence in polynucleotides. The present invention calculates a modal value of a tunnel current that arises when a nucleotide or polynucleotide for analysis passes through between electrodes, and then employs the calculated modal value. The present invention accordingly enables direct rapid implementation to identify nucleotides and to determine a nucleotide sequence in a polynucleotide without marking.
    Type: Application
    Filed: December 28, 2018
    Publication date: December 5, 2019
    Inventors: Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Tomoji Kawai