Patents by Inventor Masatoshi Majima

Masatoshi Majima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180375114
    Abstract: A proton conductor contains a metal oxide having a perovskite structure and represented by AaBbMcO3-? (wherein: A is at least one of Ba, Ca, and Sr; B is at least one of Ce and Zr; M is at least one of Y, Yb, Er, Ho, Tm, Gd, and Sc; 0.85?a?1; 0.5?b<1; c=1-b; and ? is an oxygen deficiency amount), and a standard deviation in a triangular diagram representing an atomic composition ratio of the A, the B, and the M is not greater than 0.04.
    Type: Application
    Filed: December 16, 2016
    Publication date: December 27, 2018
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., KYOTO UNIVERSITY
    Inventors: Takahiro HIGASHINO, Yohei NODA, Kazunari MIYAMOTO, Chihiro HIRAIWA, Naho MIZUHARA, Hiromasa TAWARAYAMA, Hisao TAKEUCHI, Masatoshi MAJIMA, Tetsuya UDA, Donglin HAN, Takayuki ONISHI, Yuki OTANI
  • Patent number: 10164262
    Abstract: Provided are a porous metal body that is excellent in terms of corrosion resistance and that is suitable for a collector for batteries such as lithium-ion batteries, capacitors, or fuel cells; and methods for producing the porous metal body. A production method includes a step of coating a porous nickel body with an alloy containing at least nickel and tungsten or a metal containing at least tin; and a subsequent step of a heat treatment. Another production method includes a step of forming a nickel-plated layer on a porous base and then continuously forming an alloy-plated layer containing at least nickel and tungsten or tin, a step of removing the porous base, and a step of reducing metal. Such a method can provide a porous metal body in which tungsten or tin is diffused in a porous nickel body or a nickel-plated layer.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: December 25, 2018
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Masahiro Kato, Masatoshi Majima, Tomoyuki Awazu, Hidetoshi Saito, Junichi Nishimura, Keiji Shiraishi, Hitoshi Tsuchida, Kengo Tsukamoto
  • Patent number: 10128513
    Abstract: An object of the present invention is to provide, at a low cost, a porous metal body that can be used in an electrode of a fuel cell and that has better corrosion resistance. The porous metal body has a three-dimensional mesh-like structure and contains nickel (Ni), tin (Sn), and chromium (Cr). A content ratio of the tin is 10% by mass or more and 25% by mass or less, and a content ratio of the chromium is 1% by mass or more and 10% by mass or less. On a cross section of a skeleton of the porous metal body, the porous metal body contains a solid solution phase of chromium, nickel, and tin. The solid solution phase contains a solid solution phase of chromium and trinickel tin (Ni3Sn), the solid solution phase having a chromium content ratio of 2% by mass or less, and does not contain a solid solution phase that is other than a solid solution phase of chromium and trinickel tin (Ni3Sn) and that has a chromium content ratio of less than 1.5% by mass.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: November 13, 2018
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Kengo Tsukamoto, Hitoshi Tsuchida, Hidetoshi Saito
  • Patent number: 10109866
    Abstract: A gas decomposition device 100 includes one or two or more membrane electrode assemblies 5, each including a solid electrolyte layer 2, an anode layer 3 stacked on a first side of the solid electrolyte layer 2, and a cathode layer 4 stacked on a second side of the solid electrolyte layer; and porous current collectors 8a, 8b, and 8c including continuous pores 1b, the membrane electrode assemblies being stacked with the porous current collector, the solid electrolyte layer being composed of a proton-conducting solid electrolyte, the porous current collectors including porous metal bodies 1, each of the porous metal bodies 1 including an alloy layer 12a having corrosion resistance on at least a surface of the porous metal body 1 facing the continuous pores, and the porous metal bodies forming gas channels 9a, 9b, and 9c that supply gases to the anode layer and the cathode layer.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: October 23, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Hiromasa Tawarayama, Naho Mizuhara, Takahiro Higashino, Yohei Noda
  • Patent number: 10084191
    Abstract: An object is to provide a solid electrolyte laminate that allows a large amount of gas to be supplied to a fuel electrode while having improved strength and a method for manufacturing such a solid electrolyte laminate. A solid electrolyte laminate 1 includes a solid electrolyte layer 2, a first electrode layer 3 disposed on one side of the solid electrolyte layer, and a second electrode layer 4 disposed on another side of the solid electrolyte layer. At least the first electrode layer, which forms a fuel electrode, includes a bonding layer 3a bonded to the solid electrolyte layer and a porous layer 3b having continuous pores and integrally formed on the bonding layer.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: September 25, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Atsushi Yamaguchi, Naho Mizuhara
  • Publication number: 20180261853
    Abstract: A porous metal body includes a three-dimensional mesh-like structure consisting of a skeleton, the porous metal body having a flat plate-like external form including a pair of main surfaces and end surfaces that connect the pair of main surfaces to each other, in which the skeleton includes a main metal layer consisting of nickel or a nickel alloy, and an oxide layer on a surface of the main metal layer, in which the oxide layer is not arranged on portions of the surface of the main metal layer included in the pair of main surfaces of the porous metal body.
    Type: Application
    Filed: August 30, 2016
    Publication date: September 13, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki OKUNO, Takahiro HIGASHINO, Masatoshi MAJIMA, Tomoyuki AWAZU
  • Patent number: 10050295
    Abstract: Provided is a solid electrolyte laminate comprising a solid electrolyte layer having proton conductivity and a cathode electrode layer laminated on one side of the solid electrolyte layer and made of lanthanum strontium cobalt oxide (LSC). Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte laminate can further comprise an anode electrode layer made of nickel-yttrium doped barium zirconate (Ni—BZY). This solid electrolyte laminate is suitable for a fuel cell operating in an intermediate temperature range less than or equal to 600° C.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: August 14, 2018
    Assignees: Sumitomo Electric Industries, Ltd., Kyoto University
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Atsushi Yamaguchi, Naho Mizuhara, Tetsuya Uda, Yohei Noda
  • Publication number: 20180219232
    Abstract: A plate-like porous metal body having a three-dimensional mesh-like structure and containing nickel (Ni). The content of the nickel in the porous metal body is 50% by mass or more. The porous metal body has a thickness of 0.10 mm or more and 0.50 mm or less.
    Type: Application
    Filed: July 25, 2016
    Publication date: August 2, 2018
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki OKUNO, Takahiro HIGASHINO, Tomoyuki AWAZU, Masatoshi MAJIMA
  • Publication number: 20180205095
    Abstract: A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body adjacent to at least one of the cathode and the anode and having a three-dimensional mesh-like skeleton; a second porous metal body stacked to be adjacent to the first porous metal body and having a three-dimensional mesh-like skeleton; and an interconnector adjacent to the second porous metal body. The first porous metal body has a pore size smaller than a pore size of the second porous metal body.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 19, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Takahiro HIGASHINO, Yohei NODA, Kazunari MIYAMOTO, Toshihiro YOSHIDA
  • Publication number: 20180205096
    Abstract: A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body arranged to oppose at least one of the cathode and the anode; and an interconnector arranged to oppose the first porous metal body and having a gas supply port and a gas discharge port formed therein. The first porous metal body includes a porous metal body S that opposes the gas supply port and has a three-dimensional mesh-like skeleton, and a porous metal body H that has a three-dimensional mesh-like skeleton and is other than the porous metal body S. A porosity Ps of the porous metal body S and a porosity Ph of the porous metal body H satisfy a relationship: Ps<Ph.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 19, 2018
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Takahiro HIGASHINO, Yohei NODA, Kazunari MIYAMOTO, Toshihiro YOSHIDA
  • Publication number: 20180205105
    Abstract: An electrolyte layer-anode composite member for a fuel cell includes a solid electrolyte layer containing an ionically conductive metal oxide M1, a first anode layer containing an ionically conductive metal oxide M2 and nickel oxide, and a second anode layer interposed between the solid electrolyte layer and the first anode layer and containing an ionically conductive metal oxide M3 and nickel oxide. A volume content Cn1 of the nickel oxide in the first anode layer and a volume content Cn2 of the nickel oxide in the second anode layer satisfy the relation Cn1<Cn2.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 19, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hisao TAKEUCHI, Takashi MATSUURA, Naho MIZUHARA, Chihiro HIRAIWA, Tomoyuki AWAZU, Masatoshi MAJIMA
  • Patent number: 10003082
    Abstract: Provided is an electrode catalyst material that has an increased reduction rate of a nickel catalyst and thus an improved catalytic function in a fuel cell. The electrode catalyst material for fuel cells contains nickel oxide and cobalt oxide. The electrode catalyst material contains a cobalt metal component in an amount of 2 to 15 mass % with respect to the total mass of a nickel metal component and the cobalt metal component.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: June 19, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Naho Mizuhara, Masatoshi Majima, Takahiro Higashino, Aiko Tominaga, Junji Iihara
  • Patent number: 9972446
    Abstract: An electrode for a power storage device includes carbon nanotubes, graphene, an ionic liquid, and a three-dimensional network metal porous body which holds the carbon nanotubes, the graphene, and the ionic liquid in pore portions, wherein a ratio of a total amount of the carbon nanotubes and the graphene to an amount of the ionic liquid is more than or equal to 10% by mass and less than or equal to 90% by mass, and a mass ratio between the carbon nanotubes and the graphene is within a range of 3:7 to 7:3.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: May 15, 2018
    Assignee: Meidensha Corporation
    Inventors: Kazuki Okuno, Masatoshi Majima, Takayuki Noguchi, Daisuke Iida, Masamichi Kuramoto, Masashi Ishikawa, Maki Hattori, Takumi Inui
  • Publication number: 20180093318
    Abstract: A composite material including a first porous metal body having a three-dimensional mesh-like skeleton, a second porous metal body having a three-dimensional mesh-like skeleton, and a bonding portion formed by entanglement of the skeleton of the first porous metal body and the skeleton of the second porous metal body. The porosity of the first porous metal body may be different from the porosity of the second porous metal body.
    Type: Application
    Filed: January 18, 2016
    Publication date: April 5, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Kazuki OKUNO, Takahiro HIGASHINO, Yohei NODA, Kazunari MIYAMOTO
  • Publication number: 20180073156
    Abstract: A method for producing copper includes a first step of dissolving copper by adding a copper-containing material to a solution containing an oxidant, and a second step of depositing copper on a surface of a cathode by bringing a solution (A) containing the oxidant in a reduced state into contact with a solution (B) containing copper dissolved therein with a separator provided between the solution (A) and the solution (B), arranging an anode in the solution (A), arranging the cathode in the solution (B), and applying a voltage to both the electrodes, while the oxidant contained in the solution (A) is regenerated, in which the oxidant has a standard electrode potential of 1.6 V or less.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 15, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Mitsuyasu OGAWA, Tomoyuki AWAZU, Masatoshi MAJIMA, Masahiro KATO
  • Publication number: 20180037508
    Abstract: A solid electrolyte layer contains a proton conductor having a perovskite structure, the proton conductor being represented by formula (1): BaxZryCezM1?(y+z)O3?? (where element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, and Sc, 0.85?x<0.98, 0.70?y+z<1.00, a ratio of y/z is 0.5/0.5 to 1/0, and ? is an oxygen vacancy concentration).
    Type: Application
    Filed: August 25, 2015
    Publication date: February 8, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahiro HIGASHINO, Yohei NODA, Chihiro HIRAIWA, Naho MIZUHARA, Hiromasa TAWARAYAMA, Hisao TAKEUCHI, Masatoshi MAJIMA
  • Publication number: 20180030607
    Abstract: A method for producing a nickel alloy porous body includes a step of applying a coating material that contains a nickel alloy powder of nickel and an added metal, the nickel alloy powder having a volume-average particle size of 10 ?m or less, onto a surface of a skeleton of a resin formed body having a three-dimensional mesh-like structure; a step of plating with nickel the surface of the skeleton of the resin formed body onto which the coating material has been applied; a step of removing the resin formed body; and a step of diffusing the added metal into the nickel by a heat treatment.
    Type: Application
    Filed: January 22, 2016
    Publication date: February 1, 2018
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki OKUNO, Takahiro HIGASHINO, Tomoyuki AWAZU, Masatoshi MAJIMA, Junichi NISHIMURA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Publication number: 20180022655
    Abstract: A method for manufacturing a ceramic material includes a step of performing heat treatment in a reducing atmosphere on a ceramic material in which a metallic oxide is diffused in crystal grains, thereby to reduce the metallic oxide to deposit a metallic element at grain boundaries of the ceramic material.
    Type: Application
    Filed: December 24, 2015
    Publication date: January 25, 2018
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., KYOTO UNIVERSITY
    Inventors: Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Chihiro HIRAIWA, Takahiro HIGASHINO, Yohei NODA, Naho MIZUHARA, Tetsuya UDA, Donglin HAN
  • Patent number: 9876248
    Abstract: Provided is a solid electrolyte made of yttrium-doped barium zirconate having hydrogen ion conductivity, a doped amount of yttrium being 15 mol % to 20 mol %, and a rate of increase in lattice constant at 100° C. to 1000° C. with respect to temperature changes being substantially constant. Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte can be formed as a thin film, and a solid electrolyte laminate can be obtained by laminating electrode layers on this solid electrolyte. This solid electrolyte can be applied to an intermediate temperature operating fuel cell.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: January 23, 2018
    Assignees: SUMITOMO ELECTIC INDUSTRIES, LTD., KYOTO UNIVERSITY
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Atsushi Yamaguchi, Naho Mizuhara, Tetsuya Uda, Donglin Han, Akiko Kuramitsu
  • Publication number: 20170373324
    Abstract: A method for producing an anode capable of increasing output of a solid oxide fuel cell is provided. The method for producing an anode for a solid oxide fuel cell includes a first step of shaping a mixture that contains a perovskite oxide having proton conductivity and a nickel compound and a second step of firing a shaped product, which has been obtained in the first step, in an atmosphere containing 50% by volume or more of oxygen at 1100° C. to 1350° C. so as to generate an anode.
    Type: Application
    Filed: July 21, 2015
    Publication date: December 28, 2017
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei NODA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Chihiro HIRAIWA, Takahiro HIGASHINO