Patents by Inventor Masatoshi Morishita

Masatoshi Morishita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11292601
    Abstract: An anti-icing system at least includes: a precooler that exchanges heat between bleed air and outside air; and an anti-icing unit that receives the bleed air passed through the precooler. A bleed air flow rate adjusting section that adjusts a flow rate of the bleed air supplied to the anti-icing unit adjusts the flow rate of the bleed air to suppress pressure of the bleed air to a pressure upper limit or lower by using relationship r1 and relationship r2. The relationship r1 is a relationship between an altitude and a pressure upper limit of the bleed air. The relationship r2 is a relationship between the pressure upper limit and outside air temperature at which the temperature of the bleed air reaches allowable temperature of ducts and other members through which the bleed air flows. The relationship r2 is provided based on the altitude.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: April 5, 2022
    Assignee: MITSUBISHI AIRCRAFT CORPORATION
    Inventors: Yoichi Uefuji, Masatoshi Morishita, Toshiyuki Ishida, Gento Ichikawa
  • Publication number: 20210227348
    Abstract: Provided is a sensing system in which optimal measurement by a wireless sensor node is maintained even when a surrounding environment of the wireless sensor node changes with a movement of a train. The sensing system includes one or a plurality of wireless sensor nodes and a sensing control device. Each of the wireless sensor nodes performs measurement based on a parameter value group that is one or a plurality of parameter values affecting the measurement and is installed on the train. The sensing control device determines a position of the train, determines, for at least one wireless sensor node, a parameter value group of the wireless sensor node corresponding to the specified position of the train, and performs control to set the determined parameter value group in the wireless sensor node.
    Type: Application
    Filed: December 10, 2020
    Publication date: July 22, 2021
    Inventors: Tsukasa FUJIMORI, Masatoshi MORISHITA
  • Patent number: 10979987
    Abstract: According to one embodiment, a sensor system includes a sensor node that collects data; and a data collection apparatus that is wirelessly connected to the sensor node. The sensor node encrypts the sensor data measured by the sensor device using the received encryption key according to the received measurement parameter and transmits the encrypted sensor data to the data collection apparatus. The data collection apparatus decrypts the sensor data received from the sensor node, stores the decrypted sensor data in a storage unit when the sensor data is normally decrypted, and discards non-decrypted sensor data and transmits the measurement parameter and the encryption key to the sensor node when the sensor data is not normally decrypted.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: April 13, 2021
    Assignee: Hitachi, Ltd.
    Inventors: Tsukasa Fujimori, Masatoshi Morishita, Yasuyuki Okuma
  • Patent number: 10889381
    Abstract: An anti-icing system according to the present invention blows heated air to a curved inner surface of a main wing of an aircraft. The anti-icing system includes: a piccolo tube that includes a flow path through which the heated air flows in a longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and an engine that supplies the heated air toward the piccolo tube. The heated air ejected from the ejection holes of the piccolo tube is ejected toward an upper limit position and a lower limit position of an outside airflow stagnation point that are virtually formed on the main wing.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: January 12, 2021
    Assignee: MITSUBISHI AIRCRAFT CORPORATION
    Inventors: Gento Ichikawa, Yoichi Uefuji, Toshiyuki Ishida, Masatoshi Morishita, Kazuhiro Kawai
  • Patent number: 10737937
    Abstract: A redeposited material is removed so as to electrically observe a microelement without causing foreign matters or metal contamination. An FIB device (charged particle beam device) includes an FIB barrel which discharges the focused ion beam (charged particle beam), a stage which holds a sample (substrate), a microcurrent measuring device (current measuring unit) which measures a leakage current from the sample, and a timer (time measuring unit) which measures a time to emit the focused ion beam and a time to measure the leakage current. Further, the FIB device includes a system control unit (control unit) which synchronizes a time to emit the focused ion beam and a time to measure the leakage current by the microcurrent measuring device.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: August 11, 2020
    Assignee: HITACHI, LTD.
    Inventors: Toshiyuki Mine, Keiji Watanabe, Koji Fujisaki, Masaharu Kinoshita, Masatoshi Morishita, Daisuke Ryuzaki
  • Patent number: 10589866
    Abstract: An anti-icing system according to the present invention includes: a piccolo tube that includes a flow path through which heated gas flows in the longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and an engine serving as a supply source that supplies the heated gas toward the piccolo tube. The piccolo tube is decreased in an area of the flow path in a stepwise manner or in a continuous manner in the longitudinal direction, and has a continuous side surface provided with the ejection holes.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 17, 2020
    Assignee: MITSUBISHI AIRCRAFT CORPORATION
    Inventors: Masatoshi Morishita, Masanori Tsujita, Satoshi Watanabe, Yoichi Uefuji, Kazuhiro Kawai, Toshiyuki Ishida, Gento Ichikawa, Go Fujita
  • Publication number: 20200037272
    Abstract: According to one embodiment, a sensor system includes a sensor node that collects data; and a data collection apparatus that is wirelessly connected to the sensor node. The sensor node encrypts the sensor data measured by the sensor device using the received encryption key according to the received measurement parameter and transmits the encrypted sensor data to the data collection apparatus. The data collection apparatus decrypts the sensor data received from the sensor node, stores the decrypted sensor data in a storage unit when the sensor data is normally decrypted, and discards non-decrypted sensor data and transmits the measurement parameter and the encryption key to the sensor node when the sensor data is not normally decrypted.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: Tsukasa FUJIMORI, Masatoshi MORISHITA, Yasuyuki OKUMA
  • Publication number: 20190292046
    Abstract: A redeposited material is removed so as to electrically observe a microelement without causing foreign matters or metal contamination. An FIB device (charged particle beam device) includes an FIB barrel which discharges the focused ion beam (charged particle beam), a stage which holds a sample (substrate), a microcurrent measuring device (current measuring unit) which measures a leakage current from the sample, and a timer (time measuring unit) which measures a time to emit the focused ion beam and a time to measure the leakage current. Further, the FIB device includes a system control unit (control unit) which synchronizes a time to emit the focused ion beam and a time to measure the leakage current by the microcurrent measuring device.
    Type: Application
    Filed: November 7, 2018
    Publication date: September 26, 2019
    Applicant: HITACHI, LTD.
    Inventors: Toshiyuki MINE, Keiji WATANABE, Koji FUJISAKI, Masaharu KINOSHITA, Masatoshi MORISHITA, Daisuke RYUZAKI
  • Patent number: 10377497
    Abstract: There is provided an anti-icing system that has a simple structure and makes it possible to exert anti-icing performance by dealing with displacement of a stagnation point without increasing air resistance. The anti-icing system according to the present invention blows heated gas to an inner surface of a wing of an aircraft, and includes: a piccolo tube that includes a flow path through which the heated gas flows in a longitudinal direction from a rear end to a front end, and a plurality of ejection holes provided along the longitudinal direction to make the flow path communicate with an outside; and a supply source that supplies the heated gas toward the piccolo tube. The piccolo tube is held to cause positions of the respective ejection holes to be fixed in a gravity direction.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: August 13, 2019
    Assignee: MITSUBISHI AIRCRAFT CORPORATION
    Inventors: Toshiyuki Ishida, Gento Ichikawa, Yoichi Uefuji, Masatoshi Morishita, Kazuhiro Kawai, Satoshi Watanabe, Go Fujita
  • Patent number: 10369867
    Abstract: A drive apparatus providing a heat source and driving a switching element, along with a corresponding method of using the drive apparatus. The switching element includes a transistor having a high-heat resistant semiconductor including silicon carbide. The drive apparatus is provided with a voltage adjusting unit that varies a drive voltage to be applied to a conduction control terminal of the switching element in order to put the switching element in an ON state, and the voltage adjusting unit applies, as the drive voltage, a voltage in an active region of the transistor to the conduction control terminal.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: August 6, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.
    Inventors: Keiji Nagasaka, Hideo Nakamura, Koji Nakano, Masatoshi Morishita, Shunsuke Yakushiji
  • Patent number: 10315775
    Abstract: An aircraft duct structure includes a first duct through which exhaust air from a front-side equipment compartment flows, and a second duct through which exhaust air from a rear-side equipment compartment flows. The first duct has a terminal end part where the exhaust air inside the second duct flows into the exhaust air inside the first duct at a substantially right angle, and a flow straightening plate located inside the terminal end part. The terminal end part has a jet opening which faces, across a clearance, an air pressure regulating port where an air pressure regulating valve is disposed. The inside of the terminal end part is divided by the flow straightening plate into an upper region and a lower region. The exhaust air inside the first duct and the exhaust air inside the second duct merge together in the upper region.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: June 11, 2019
    Assignee: MITSUBISHI AIRCRAFT CORPORATION
    Inventors: Masatoshi Morishita, Yoichi Uefuji, Toshiyuki Ishida, Gento Ichikawa, Yasunari Tanaka, Fumio Kondo
  • Patent number: 10276341
    Abstract: The present invention is directed to a technique for correcting processing positional deviation and processing size deviation during processing by a focused ion beam device. A focused ion beam device control method includes forming a first processed figure on the surface of a specimen through the application of a focused ion beam in a first processing range of vision; determining the position of a next, second processing range of vision based on the outer dimension of the first processed figure; and moving a stage to the position of the second processing range of vision thus determined. Further, the control method includes forming a second processed figure through the application of the focused ion beam in a second processing range of vision.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: April 30, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Keiji Watanabe, Toshiyuki Mine, Hiroyasu Shichi, Masatoshi Morishita
  • Patent number: 10107545
    Abstract: An air conditioning apparatus for a vehicle includes a refrigerant heater 41 that is provided between an internal evaporator 8 and a suction side of an electric compressor 20 to be in parallel with an external evaporator 32, and heats a refrigerant which is suctioned into the electric compressor 20; and an air conditioning control apparatus 50 that determines whether the external evaporator 32 is frosted. While the air conditioning apparatus for a vehicle operates in a heating mode, when the air conditioning control apparatus 50 determines that the external evaporator 32 is frosted, a supply of the refrigerant subject to the heat exchange in an internal condenser 9 to the external evaporator 32 is stopped, and the refrigerant is supplied to the refrigerant heater 41, is heated and then, is suctioned into the electric compressor 20.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: October 23, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES AUTOMOTIVE THERMAL SYSTEMS CO., LTD.
    Inventors: Masatoshi Morishita, Toshihisa Kondo, Akira Katayama
  • Patent number: 10086677
    Abstract: A refrigerant heating performance is increased while suppressing an increase in weight or cost. A vehicle air-conditioning device (10) is provided with a heat pump cycle (16) for heating operation in which an electric compressor (50) for compressing refrigerant, a vehicle-cabin-interior condenser (26), a throttle (52), and a vehicle-cabin-exterior heat exchanger (54) are connected in that order via refrigerant piping. An inverter for the electric compressor (50) in which a power element comprising a highly heat-resistant semiconductor device is used is disposed on the electric compressor (50) so that the refrigerant compressed by the electric compressor (50) can be heated by the power element. During heating operation of the heat pump cycle (16), the refrigerant is heated by the power element.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: October 2, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.
    Inventors: Masatoshi Morishita, Koji Nakano, Hideo Nakamura, Keiji Nagasaka, Shunsuke Yakushiji
  • Publication number: 20180261423
    Abstract: The present invention is directed to a technique for correcting processing positional deviation and processing size deviation during processing by a focused ion beam device. A focused ion beam device control method includes forming a first processed figure on the surface of a specimen through the application of a focused ion beam in a first processing range of vision; determining the position of a next, second processing range of vision based on the outer dimension of the first processed figure; and moving a stage to the position of the second processing range of vision thus determined. Further, the control method includes forming a second processed figure through the application of the focused ion beam in a second processing range of vision.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 13, 2018
    Inventors: Keiji WATANABE, Toshiyuki MINE, Hiroyasu SHICHI, Masatoshi MORISHITA
  • Patent number: 10046860
    Abstract: The present invention provides a windshield device including: a windshield; a heater that is provided in the windshield and configured to generate heat by energization; a temperature sensor that is provided in the windshield and configured to detect a temperature; and a control unit that performs power control on the heater. The control unit is configured to supply an input power to the heater, the input power being acquired by applying a detected temperature detected by the temperature sensor to a function that is determined in accordance with a dew-point temperature of an inside of a compartment separated from an outside of the compartment by the windshield.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: August 14, 2018
    Assignee: MITSUBISHI AIRCRAFT CORPORATION
    Inventors: Toshiyuki Ishida, Masatoshi Morishita, Yoichi Uefuji, Gento Ichikawa
  • Patent number: 10040336
    Abstract: A heat pump vehicle air conditioning system passes hot gas to a condenser and a vaporizer for the vehicle cabin exterior. Even with low outside air temperature, it can efficiently defrost using the cooling cycle. The system includes a cabin-interior condenser downstream of a cabin-interior vaporizer within an HVAC unit connected via refrigerant switching means to a cooling cycle. Cooling is accomplished by a compressor, cabin-exterior condenser, first decompression unit with on-off valve function, the cabin-interior vaporizer, and an accumulator. A cabin-exterior vaporizer disposed outside of the vehicle cabin is connected with a second decompression unit via an on-off valve function and to the exit-side liquid refrigerant pipe of the cabin-exterior condenser. A bypass circuit having a third decompression unit with on-off function is connected between the accumulator and the exit-side liquid refrigerant pipe of the cabin-exterior condenser.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: August 7, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES AUTOMOTIVE THERMAL SYSTEMS CO., LTD.
    Inventors: Masatoshi Morishita, Toshiyuki Ishida
  • Patent number: 9884536
    Abstract: A refrigerant cycle (16) for cooling as a prototype is provided with: an internal condenser (8) connected to a discharge circuit of an electric compressor (9) and disposed on a downstream of an internal evaporator (7) of an HVAC unit (2); a first heating circuit (18) connected to a receiver (11) through a switching unit (17) arranged on an inlet side of the external condenser (8); and a second heating circuit (23) connected between an outlet side of the receiver (11) and a suction side of the electric compressor (9) and provided with a second expansion valve (20) and an external evaporator (21). A heat pump cycle (24) for heating is formed by a second heating circuit (23) including the electric compressor (9), the internal condenser (8), the switching unit (17), the first heating circuit (18), the receiver (11), the second expansion valve (20), and the external evaporator (21).
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: February 6, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Akira Katayama, Nobuya Nakagawa, Toshihisa Kondou, Masatoshi Morishita
  • Patent number: 9845157
    Abstract: An aircraft includes: a cockpit, the inside of which is pressurized; equipment which is at least partially disposed on the outside of the cockpit (external space) where the pressure is lower than the inside of the cockpit (internal space); a forced air delivery mechanism which discharges air from a peripheral space of the equipment on the outside of the cockpit by an exhaust fan to supply a branch flow divided from a main flow of air-conditioning exhaust, which has air-conditioned the inside of the cockpit, as cooling air to the equipment; and a natural air delivery mechanism which uses a differential pressure between the inside of the cockpit and the outside of the cockpit to supply air inside the cockpit as cooling air to the equipment through a ventilation opening putting in communication the peripheral space and the inside of the cockpit with one another.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: December 19, 2017
    Assignee: MITSUBISHI AIRCRAFT CORPORATION
    Inventors: Toshiyuki Ishida, Yoichi Uefuji, Masatoshi Morishita, Gento Ichikawa, Yasunari Tanaka, Fumio Kondo
  • Publication number: 20170275005
    Abstract: An anti-icing system at least includes: a precooler that exchanges heat between bleed air and outside air; and an anti-icing unit that receives the bleed air passed through the precooler. A bleed air flow rate adjusting section that adjusts a flow rate of the bleed air supplied to the anti-icing unit adjusts the flow rate of the bleed air to suppress pressure of the bleed air to a pressure upper limit or lower by using relationship r1 and relationship r2. The relationship r1 is a relationship between an altitude and a pressure upper limit of the bleed air. The relationship r2 is a relationship between the pressure upper limit and outside air temperature at which the temperature of the bleed air reaches allowable temperature of ducts and other members through which the bleed air flows. The relationship r2 is provided based on the altitude.
    Type: Application
    Filed: March 13, 2017
    Publication date: September 28, 2017
    Inventors: Yoichi Uefuji, Masatoshi Morishita, Toshiyuki Ishida, Gento Ichikawa