Patents by Inventor Maureen L. Bricker

Maureen L. Bricker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150136657
    Abstract: A multifunction hydrotreater includes a particulate removal zone having a particulate trap to remove particulate contaminants from a coal tar stream and a demetallizing zone including a demetallizing catalyst to remove organically bound metals from the departiculated stream. The demetallizing zone is positioned after the particulate removal zone. The hydrotreater also includes a hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation zone positioned after the demetallization zone, which includes at least one hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation catalyst to provide a hydrotreated coal tar stream.
    Type: Application
    Filed: August 12, 2014
    Publication date: May 21, 2015
    Inventors: Vasant P. Thakkar, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, Stanley J. Frey, James A. Johnson, Joseph A. Kocal, Matthew Lippmann
  • Publication number: 20150136652
    Abstract: A process for hydrotreating a coal tar stream is described. A coal tar stream is provided, and the coal tar stream is expanded with an inert gas stream to provide an expanded liquid coal tar stream. The expanded liquid coal tar stream is hydrotreated. The coal tar stream can be reacted with a hydrocarbon solvent before it is expanded.
    Type: Application
    Filed: August 26, 2014
    Publication date: May 21, 2015
    Inventors: Maureen L. Bricker, Paul T. Barger, Joseph A. Kocal, Matthew Lippmann, Kurt M. Vanden Bussche
  • Publication number: 20150141700
    Abstract: A process for producing alkylated aromatic compounds includes pyrolyzing a coal feed to produce a coke stream and a coal tar stream. The coal tar stream is hydrotreated and the resulting hydrotreated coal tar stream is cracked. A portion of the cracked coal tar stream is separated to obtain a fraction having an initial boiling point in the range of about 60° C. to about 180° C., and an aromatics-rich hydrocarbon stream is extracted by contacting the fraction with one or more solvents. The aromatics-rich hydrocarbon stream is contacted with an alkylating agent to produce an alkylated aromatic stream, or the aromatics-rich hydrocarbon stream is reacted with an aliphatic compound or methanol in the presence of a catalyst to produce a methylated aromatic stream. The alkylated aromatic stream, the methylated aromatic stream, or both are separated into at least a benzene stream, a toluene stream, and a xylenes stream.
    Type: Application
    Filed: August 22, 2014
    Publication date: May 21, 2015
    Inventors: James A. Johnson, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, Stanley J. Frey, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar
  • Publication number: 20150136653
    Abstract: A process for gasifying and pyrolyzing coal is described. A first coal feed is pyrolyzed into a coal tar stream and a coke stream in a pyrolysis zone. A second coal feed is gasified in a gasification zone to produce an effluent stream. Contaminants are removed from the effluent stream to provide a purified effluent stream. The purified effluent stream is introduced to the pyrolysis zone.
    Type: Application
    Filed: August 27, 2014
    Publication date: May 21, 2015
    Inventors: Kurt M. Vanden Bussche, Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Matthew Lippmann
  • Patent number: 8999145
    Abstract: One exemplary embodiment can be a slurry hydrocracking process. The process can include providing one or more hydrocarbon compounds having an initial boiling point temperature of at least about 340° C., and a slurry catalyst to a slurry hydrocracking zone. The slurry catalyst may have about 32-about 50%, by weight, iron; about 3-about 14%, by weight, aluminum; no more than about 10%, by weight, sodium; and about 2-about 10%, by weight, calcium. Typically, all catalytic component percentages are as metal and based on the weight of the dried slurry catalyst.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Maureen L. Bricker, Beckay J. Mezza, Alakananda Bhattacharyya
  • Publication number: 20140102944
    Abstract: One exemplary embodiment can be a slurry hydrocracking process. The process can include providing one or more hydrocarbon compounds having an initial boiling point temperature of at least about 340° C., and a slurry catalyst to a slurry hydrocracking zone. The slurry catalyst may have about 32- about 50%, by weight, iron; about 3- about 14%, by weight, aluminum; no more than about 10%, by weight, sodium; and about 2- about 10%, by weight, calcium. Typically, all catalytic component percentages are as metal and based on the weight of the dried slurry catalyst.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: UOP LLC
    Inventors: Lorenz J. Bauer, Maureen L. Bricker, Beckay J. Mezza, Alakananda Bhattacharyya
  • Patent number: 8617386
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 31, 2013
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Patent number: 8608945
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Patent number: 8101807
    Abstract: A hydrogenolysis method for converting glycerol into propylene glycol by directing a glycerol containing feed having a pH of about 10 or more to a reaction section including at least one glycerol conversion catalyst and operating at glycerol conversions conditions to form a reaction product including propylene glycol.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: January 24, 2012
    Assignee: UOP LLC
    Inventors: Maureen L. Bricker, Laura E. Leonard, Todd M. Kruse, James G. Vassilakis, Simon R. Bare
  • Publication number: 20110306490
    Abstract: A composition is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Applicant: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Publication number: 20110303583
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Applicant: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Publication number: 20110303584
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Applicant: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Patent number: 8071820
    Abstract: A method and apparatus for converting glycerol into propylene glycol by directing a basic glycerol containing feed and a hydrogen containing gas into a reaction zone including a fixed bed of catalyst that is operating at glycerol conversion conditions where the reactor includes and at least one quench zone and directing a quench material into the quench zone.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: December 6, 2011
    Assignee: UOP LLC
    Inventors: Maureen L. Bricker, Laura E. Leonard
  • Patent number: 8062505
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. Performance of the iron oxide and alumina catalyst at high mean particle diameters is comparable to performance at low mean particle diameters.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 22, 2011
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Maureen L. Bricker, Beckay J. Mezza, Lorenz J. Bauer
  • Patent number: 8062509
    Abstract: One exemplary embodiment can be a process for desorbing one or more polynuclear aromatics from at least one fraction from a hydrocracking zone using an adsorption zone. The adsorption zone can include first and second vessels. Generally, the process includes passing the at least one fraction from an effluent of the hydrocracking zone through the first vessel containing a first activated carbon, and passing a petroleum fraction boiling in the range of about 200-about 400° C. for desorbing the one or more polynuclear aromatics through the second vessel containing a second activated carbon.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 22, 2011
    Assignee: UOP LLC
    Inventors: Manuela Serban, Christopher D. Gosling, Maureen L. Bricker
  • Publication number: 20100078359
    Abstract: One exemplary embodiment can be a process for desorbing one or more polynuclear aromatics from at least one fraction from a hydrocracking zone using an adsorption zone. The adsorption zone can include first and second vessels. Generally, the process includes passing the at least one fraction from an effluent of the hydrocracking zone through the first vessel containing a first activated carbon, and passing a petroleum fraction boiling in the range of about 200-about 400° C. for desorbing the one or more polynuclear aromatics through the second vessel containing a second activated carbon.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Manuela Serban, Christopher D. Gosling, Maureen L. Bricker
  • Publication number: 20090321314
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. Performance of the iron oxide and alumina catalyst at high mean particle diameters is comparable to performance at low mean particle diameters.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Alakananda Bhattacharyya, Maureen L. Bricker, Beckay J. Mezza, Lorenz J. Bauer
  • Publication number: 20090321315
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. Performance of the iron oxide and alumina catalyst is not substantially affected by significant quantities of water on the catalyst.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Alakanandra Bhattacharyya, Maureen L. Bricker, Beckay J. Mezza, Lorenz J. Bauer
  • Publication number: 20080249198
    Abstract: A process for the oxidation of methane to methanol has been developed. The process involves contacting a gas stream, comprising methane, a solvent and an oxidizing agent with a bimetallic catalyst at oxidation conditions to produce a methyl ester. Finally, the methyl ester is hydrolyzed to yield a methanol product stream. The bimetallic catalyst comprises at least two transition metal components. One example of the catalytic component is a combination of cobalt and manganese.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 9, 2008
    Inventors: Wensheng Chen, Simon R. Bare, Maureen L. Bricker, Timothy A. Brandvold, Joseph A. Kocal
  • Publication number: 20080249337
    Abstract: A process for the oxidation of methane to methanol has been developed. The process involves contacting a gas stream, comprising methane, a solvent and an oxidizing agent with a catalyst at oxidation conditions to produce a methyl ester. Finally, the methyl ester is hydrolyzed to yield a methanol product stream. The catalyst comprises a transition metal component such as manganese oxide and an inorganic oxide such as silica. The transition metal component can be dispersed onto the inorganic oxide.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 9, 2008
    Inventors: Wensheng Chen, Timothy A. Brandvold, Joseph A. Kocal, Maureen L. Bricker, Mary J. Lanuza