Patents by Inventor Mauro J. Kobrinsky

Mauro J. Kobrinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817442
    Abstract: Microelectronic assemblies fabricated using hybrid manufacturing, as well as related devices and methods, are disclosed herein. As used herein, “hybrid manufacturing” refers to fabricating a microelectronic assembly by arranging together at least two IC structures fabricated by different manufacturers, using different materials, or different manufacturing techniques. For example, a microelectronic assembly may include a first IC structure that includes first interconnects and a second IC structure that includes second interconnects, where at least some of the first and second interconnects may include a liner and an electrically conductive fill material, and where a material composition of the liner/electrically conductive fill material of the first interconnects may be different from a material composition of the liner/electrically conductive fill material of the second interconnects.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: November 14, 2023
    Assignee: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma, Mauro J. Kobrinsky, Doug B. Ingerly
  • Patent number: 11799037
    Abstract: Gate-all-around integrated circuit structures having asymmetric source and drain contact structures, and methods of fabricating gate-all-around integrated circuit structures having asymmetric source and drain contact structures, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a fin. A gate stack is over the vertical arrangement of nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of nanowires. A first conductive contact structure is coupled to the first epitaxial source or drain structure. A second conductive contact structure is coupled to the second epitaxial source or drain structure. The second conductive contact structure is deeper along the fin than the first conductive contact structure.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, Mauro J. Kobrinsky, Tahir Ghani
  • Publication number: 20230317850
    Abstract: Embodiments described herein may be related to creating a low resistance electrical path within a transistor between a front side trench connector and back side contacts and/or metal layers of the transistor. The low resistance electrical path does not go through a fin of the transistor that includes epitaxial material, but rather may go through a conductive path that does not include an epitaxial material. Embodiments may be compatible with a self-aligned back side contact architecture, which does not rely on deep via patterning. Other embodiments may be described and/or shown.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Shaun MILLS, Ehren MANNEBACH, Joseph D'SILVA, Kalyan KOLLURU, Mauro J. KOBRINSKY
  • Publication number: 20230317731
    Abstract: Integrated circuit structures having conductive structures in fin isolation regions are described. In an example, an integrated circuit structure includes a vertical stack of horizontal nanowires over a sub-fin. The integrated circuit structure also includes a gate structure. The gate structure includes a first gate structure portion over the vertical stack of horizontal nanowires, a second gate structure portion laterally adjacent to the first gate structure portion, wherein the second gate structure portion is not over a channel structure, and a gate cut between the first gate structure portion and the second gate structure portion.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Leonard P. GULER, Mauro J. KOBRINSKY, Mohit K. HARAN, Marni NABORS, Tahir GHANI, Charles H. WALLACE, Allen B. GARDINER, Sukru YEMENICIOGLU
  • Publication number: 20230317809
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, the semiconductor device comprises a substrate, and a non-planar transistor with a source and a drain over the substrate. In an embodiment, a backside contact is provided to the source or drain through the substrate. In an embodiment, a residual liner is between the source or drain and the backside contact. In an embodiment, the residual liner does not extend entirely across an interface between the backside contact and the source or drain.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Sudipto NASKAR, Shaun MILLS, Mauro J. KOBRINSKY
  • Publication number: 20230317787
    Abstract: Integrated circuit structures having backside gate tie-down are described. In an example, a structure includes a first vertical stack of horizontal nanowires over a first sub-fin, and a second vertical stack of horizontal nanowires over a second sub-fin, the second vertical stack of horizontal nanowires spaced apart from and parallel with the first vertical stack of horizontal nanowires. A gate structure includes a first gate structure portion over the first vertical stack of horizontal nanowires, wherein the first gate structure extends along an entirety of the first sub-fin. A second gate structure portion is over the second vertical stack of horizontal nanowires, wherein the second gate structure does not extend along an entirety of the second sub-fin. A gate cut is between the first gate structure portion and the second gate structure portion.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Leonard P. GULER, Mauro J. KOBRINSKY, Mohit K. HARAN, Marni NABORS, Tahir GHANI, Charles H. WALLACE, Allen B. GARDINER, Sukru YEMENICIOGLU
  • Publication number: 20230317148
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and techniques directed to electrical couplings between epitaxial structures and voltage sources within transistors in SRAM bit cells. Embodiments include direct electrical couplings between a backside contact metal (BM0) and a backside of an epitaxial structure, as well as electrical connection structures that electrically couple the BM0 to a front side of an epitaxial structure. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Clifford ONG, Leonard P. GULER, Smita SHRIDHARAN, Zheng GUO, Charles H. WALLACE, Eric A. KARL, Mauro J. KOBRINSKY, Shem O. OGADHOH, Tahir GHANI
  • Publication number: 20230317612
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and techniques directed to electrical couplings between epitaxial structures and voltage sources within transistors in SRAM bit cells. Embodiments include direct electrical couplings between a backside contact metal (BMO) and a backside of an epitaxial structure to provide SRAM VCC voltage (SVCC) voltage, as well as electrical connection structures that electrically couple the BMO to a front side of an epitaxial structure to provide SVCC voltage. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Clifford ONG, Zheng GUO, Eirc A. KARL, Smita SHRIDHARAN, Mauro J. KOBRINSKY, Shem O. OGADHOH, Clifford J. ENGEL, Charles H. WALLACE, Leonard P. GULER
  • Publication number: 20230307514
    Abstract: Gate-all-around integrated circuit structures having backside contact with enhanced area relative to an epitaxial source or drain region are described. For example, an integrated circuit structure includes a first vertical arrangement of nanowires and a second vertical arrangement of nanowires. A gate stack is over the first and second vertical arrangements of nanowires. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires. Second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. A conductive structure is vertically beneath and in contact with one of the first epitaxial source or drain structures. The conductive structure is along an entirety of a bottom of the one of the first epitaxial source or drain structures, and the conductive structure can also be along a portion of sides of one of the first epitaxial source or drain structures.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 28, 2023
    Inventors: Joseph D'SILVA, Mauro J. KOBRINSKY, Shaun MILLS, Nafees A. KABIR, Makram ABD EL QADER, Leonard P. GULER
  • Publication number: 20230290825
    Abstract: Integrated circuit structures having backside self-aligned conductive source or drain contacts, and methods of fabricating integrated circuit structures having backside self-aligned conductive source or drain contacts, are described. For example, an integrated circuit structure includes a sub-fin structure over a vertical stack of horizontal nanowires. An epitaxial source or drain structure is laterally adjacent and coupled to the vertical stack of horizontal nanowires. A conductive source or drain contact is laterally adjacent to the sub-fin structure and is on and in contact with the epitaxial source or drain structure. The conductive source or drain contact does not extend around the epitaxial source or drain structure.
    Type: Application
    Filed: March 11, 2022
    Publication date: September 14, 2023
    Inventors: Leonard P. Guler, Sean Pursel, Raghuram Gandikota, Sikandar Abbas, Tsuan-Chung Chang, Mauro J. Kobrinsky, Tahir Ghani, Elliot N. Tan
  • Publication number: 20230290844
    Abstract: Integrated circuit structures having backside self-aligned penetrating conductive source or drain contacts, and methods of fabricating integrated circuit structures having backside self-aligned penetrating conductive source or drain contacts, are described. For example, an integrated circuit structure includes a sub-fin structure over a vertical stack of horizontal nanowires. An epitaxial source or drain structure is laterally adjacent and coupled to the vertical stack of horizontal nanowires. A conductive source or drain contact is laterally adjacent to the sub-fin structure and extends into the epitaxial source or drain structure. The conductive source or drain contact does not extend around the epitaxial source or drain structure.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 14, 2023
    Inventors: Leonard P. GULER, Mauro J. KOBRINSKY, Ehren MANNEBACH, Makram ABD EL QADER, Tahir GHANI
  • Patent number: 11756886
    Abstract: Microelectronic assemblies fabricated using hybrid manufacturing, as well as related devices and methods, are disclosed herein. As used herein, “hybrid manufacturing” refers to fabricating a microelectronic assembly by arranging together at least two IC structures fabricated by different manufacturers, using different materials, or different manufacturing techniques. For example, a microelectronic assembly may include a first IC structure that includes first interconnects and a second IC structure that includes second interconnects, where at least some of the first and second interconnects may include a liner and an electrically conductive fill material, and where a material composition of the liner/electrically conductive fill material of the first interconnects may be different from a material composition of the liner/electrically conductive fill material of the second interconnects.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma, Mauro J. Kobrinsky, Doug B. Ingerly
  • Publication number: 20230207551
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to standard cell architectures without power delivery space allocation. Other embodiments may be described or claimed.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Sukru YEMENICIOGLU, Richard E. SCHENKER, Xinning WANG, Mauro J. KOBRINSKY, Tahir GHANI
  • Publication number: 20230207623
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a vertical stack of semiconductor channels, a source on a first side of the vertical stack of semiconductor channels, and a drain on a second side of the vertical stack of semiconductor channels, In an embodiment, a metal is below the source and in direct contact with the source, where a centerline of the metal is substantially aligned with a centerline of the source.
    Type: Application
    Filed: December 24, 2021
    Publication date: June 29, 2023
    Inventors: Leonard P. GULER, Mohammad HASAN, Mohit K. HARAN, Mauro J. KOBRINSKY, Charles H. WALLACE, Tahir GHANI
  • Publication number: 20230207700
    Abstract: Integrated circuit structures having partitioned source or drain contact structures, and methods of fabricating integrated circuit structures having partitioned source or drain contact structures, are described. For example, an integrated circuit structure includes a fin. A gate stack is over the fin. A first epitaxial source or drain structure is at a first end of the fin. A second epitaxial source or drain structure is at a second end of the fin. A conductive contact structure is coupled to one of the first or the second epitaxial source or drain structures. The conductive contact structure has a first portion partitioned from a second portion.
    Type: Application
    Filed: February 23, 2023
    Publication date: June 29, 2023
    Inventors: Mauro J. KOBRINSKY, Stephanie BOJARSKI, Babita DHAYAL, Biswajeet GUHA, Tahir GHANI
  • Patent number: 11690211
    Abstract: Described herein are IC devices that include TFT based memory arrays on both sides of a layer of logic devices. An example IC device includes a support structure (e.g., a substrate) on which one or more logic devices may be implemented. The IC device further includes a first memory cell on one side of the support structure, and a second memory cell on the other side of the support structure, where each of the first memory cell and the second memory cell includes a TFT as an access transistor. Providing TFT based memory cells on both sides of a layer of logic devices allows significantly increasing density of memory cells in a memory array having a given footprint area, or, conversely, significantly reducing the footprint area of the memory array with a given memory cell density.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 27, 2023
    Assignee: Intel Corporation
    Inventors: Wilfred Gomes, Mauro J. Kobrinsky, Conor P. Puls, Kevin Fischer, Bernhard Sell, Abhishek A. Sharma, Tahir Ghani
  • Publication number: 20230197779
    Abstract: Integrated circuit structures having backside power delivery are described. In an example, an integrated circuit structure includes a device layer within a cell boundary, the device layer having a front side and a backside, and the device layer including a source or drain structure. A source or drain trench contact structure is on the front side of the device layer. The source or drain trench contact structure is coupled to the source or drain structure. A metal layer is on the backside of the device layer. A via structure couples the metal layer to the source or drain trench contact structure. The via structure is overlapping and parallel with a cell row boundary of the cell boundary.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Inventors: Marni NABORS, Mauro J. KOBRINSKY, Conor P. PULS, Kevin FISCHER, Curtis TSAI
  • Publication number: 20230197836
    Abstract: Described herein are integrated circuit devices with conductive regions formed from MX or MAX materials. MAX materials are layered, hexagonal carbides and nitrides that include an early transition metal (M) and an A group element (A). MX materials remove the A group element. MAX and MX materials are highly conductive, and their two-dimensional layer structure allows very thin layers to be formed. MAX or MX materials can be used to form several conductive elements of IC circuits, including contacts, interconnects, or liners or barrier regions for contacts or interconnects.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Carl Hugo Naylor, Christopher J. Jezewski, Jeffery D. Bielefeld, Jiun-Ruey Chen, Ramanan V. CHEBIAM, Mauro J. Kobrinsky, Matthew V. Metz, Scott B. Clendenning, Sudurat Lee, Kevin P. O'Brien, Kirby Kurtis Maxey, Ashish Verma Penumatcha, Chelsey Jane Dorow, Uygar E. Avci
  • Publication number: 20230193473
    Abstract: The formation of titanium contacts to silicon germanium (SiGe) comprises the formation of a titanium silicide layer in which the silicon for the titanium silicide layer is provided by flowing silane (disilane, trisilane, etc.) over a titanium layer at an elevated temperature. The titanium silicide layer can help limit the amount of titanium and germanium interdiffusion that can occur across the titanium silicide-silicon germanium interface, which can reduce (or eliminate) the formation of voids in the SiGe layer during subsequent anneal and other high-temperature processes. The surface of the SiGe layer upon which the titanium layer is formed can also be preamorphized via boron and germanium implantation to further improve the robustness of the SiGe layer against microvoid development. The resulting titanium contacts are thermally stable in that their resistance remains substantially unchanged after being subjected to downstream annealing and high-temperature processing processes.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Debaleena Nandi, Gilbert Dewey, Tahir Ghani, Nazila Haratipour, Mauro J. Kobrinsky, Anand Murthy
  • Publication number: 20230197817
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise i) a first PMOS epitaxial (pEPI) region of germanium and boron, ii) a second pEPI region of silicon, germanium and boron on the first pEPI region at a contact location, iii) titanium silicide conductive contact material on the second pEPI region.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Inventors: Debaleena NANDI, Cory BOMBERGER, Diane LANCASTER, Gilbert DEWEY, Sandeep K. PATIL, Mauro J. KOBRINSKY, Anand S. MURTHY, Tahir GHANI