Patents by Inventor Melissa K. Carpenter
Melissa K. Carpenter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20100317101Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.Type: ApplicationFiled: February 22, 2010Publication date: December 16, 2010Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
-
Publication number: 20100203633Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.Type: ApplicationFiled: April 20, 2010Publication date: August 12, 2010Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
-
Patent number: 7763463Abstract: This disclosure provides improved methods for obtaining populations of dopaminergic neurons from pluripotent stem cells. The process involves taking a population of neural precursor cells derived from a line of human embryonic stem cells, and culturing the cells in a medium that contains a neurotrophin, either cyclic adenosine monophosphate (cAMP) or a compound that elevates intracellular cAMP levels, and optionally an antioxidant such as ascorbic acid. Cell populations have been obtained that contain a high proportion of cells staining for tyrosine hydroxylase, which is a feature of dopaminergic neurons. The neural progenitors and terminally differentiated neurons of this invention can be generated in large quantities for use in drug screening and the treatment of clinically important neurological disorders, such as Parkinson's disease.Type: GrantFiled: December 10, 2004Date of Patent: July 27, 2010Assignee: Geron CorporationInventors: Melissa K. Carpenter, R. Scott Thies
-
Publication number: 20090305405Abstract: This invention provides a system for efficiently producing differentiated cells from pluripotent cells, such as human embryonic stem cells. Rather than permitting the cells to form embryoid bodies according to established techniques, differentiation is effected directly in monolayer culture on a suitable solid surface. The cells are either plated directly onto a differentiation-promoting surface, or grown initially on the solid surface in the absence of feeder cells and then exchanged into a medium that assists in the differentiation process. The solid surface and the culture medium can be chosen to direct differentiation down a particular pathway, generating a cell population that is remarkably uniform. The methodology is well adapted to bulk production of committed precursor and terminally differentiated cells for use in drug screening or regenerative medicine.Type: ApplicationFiled: July 10, 2009Publication date: December 10, 2009Applicant: GERON CORPORATIONInventors: Melissa K. Carpenter, R. Scott Thies
-
Publication number: 20090291495Abstract: This invention provides a system for efficiently producing differentiated cells from pluripotent cells, such as human embryonic stem cells. Rather than permitting the cells to form embryoid bodies according to established techniques, differentiation is effected directly in monolayer culture on a suitable solid surface. The cells are either plated directly onto a differentiation-promoting surface, or grown initially on the solid surface in the absence of feeder cells and then exchanged into a medium that assists in the differentiation process. The solid surface and the culture medium can be chosen to direct differentiation down a particular pathway, generating a cell population that is remarkably uniform. The methodology is well adapted to bulk production of committed precursor and terminally differentiated cells for use in drug screening or regenerative medicine.Type: ApplicationFiled: June 3, 2009Publication date: November 26, 2009Applicant: Geron CorporationInventors: Melissa K. Carpenter, R. Scott Thies
-
Patent number: 7560281Abstract: This invention provides a system for efficiently producing differentiated cells from pluripotent cells, such as human embryonic stem cells. Rather than permitting the cells to form embryoid bodies according to established techniques, differentiation is effected directly in monolayer culture on a suitable solid surface. The cells are either plated directly onto a differentiation-promoting surface, or grown initially on the solid surface in the absence of feeder cells and then exchanged into a medium that assists in the differentiation process. The solid surface and the culture medium can be chosen to direct differentiation down a particular pathway, generating a cell population that is remarkably uniform. The methodology is well adapted to bulk production of committed precursor and terminally differentiated cells for use in drug screening or regenerative medicine.Type: GrantFiled: December 10, 2004Date of Patent: July 14, 2009Assignee: Geron CorporationInventors: Melissa K. Carpenter, R. Scott Thies
-
Publication number: 20090136955Abstract: This disclosure provides a newly developed strategy and particular options for differentiating pluripotent stem cells into cells of the hepatocyte lineage. Many of the protocols are based on a strategy in which the cells are first differentiated into early germ layer cells, then into hepatocyte precursors, and then into mature cells. The cells obtained have morphological features and phenotypic markers characteristic of human adult hepatocytes. They also show evidence of cytochrome p450 enzyme activity, validating their utility for commercial applications such as drug screening, or use in the manufacture of medicaments and medical devices for clinical therapy.Type: ApplicationFiled: November 24, 2008Publication date: May 28, 2009Inventors: Ramkumar Mandalam, Saadia Faouzi, Isabelle Nadeau, Kristina Pfendler-Bonham, Namitha Rao, Melissa K. Carpenter, Lakshmi Rambhatla, Choy-Pik Chiu
-
Publication number: 20090117639Abstract: This invention provides populations of neural progenitor cells, differentiated neurons, glial cells, and astrocytes. The populations are obtained by culturing stem cell populations (such as embryonic stem cells) in a cocktail of growth conditions that initiates differentiation, and establishes the neural progenitor population. The progenitors can be further differentiated in culture into a variety of different neural phenotypes, including dopaminergic neurons. The differentiated cell populations or the neural progenitors can be generated in large quantities for use in drug screening and the treatment of neurological disorders.Type: ApplicationFiled: December 11, 2008Publication date: May 7, 2009Inventor: Melissa K. Carpenter
-
Patent number: 7473555Abstract: This disclosure provides a newly developed strategy and particular options for differentiating pluripotent stem cells into cells of the hepatocyte lineage. Many of the protocols are based on a strategy in which the cells are first differentiated into early germ layer cells, then into hepatocyte precursors, and then into mature cells. The cells obtained have morphological features and phenotypic markers characteristic of human adult hepatocytes. They also show evidence of cytochrome p450 enzyme activity, validating their utility for commercial applications such as drug screening, or use in the manufacture of medicaments and medical devices for clinical therapy.Type: GrantFiled: March 26, 2004Date of Patent: January 6, 2009Assignee: Geron CorporationInventors: Ramkumar Mandalam, Saadia Faouzi, Isabelle Nadeau, Kristina Pfendler-Bonham, Namitha Rao, Melissa K. Carpenter, Lakshmi Rambhatla, Choy-Pik Chiu
-
Publication number: 20080299582Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.Type: ApplicationFiled: July 9, 2008Publication date: December 4, 2008Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
-
Patent number: 7413904Abstract: This disclosure provides a system for obtaining genetically altered primate pluripotent stem (pPS) cells. The role of the feeder cells is replaced by supporting the culture on an extracellular matrix, and culturing the cells in a conditioned medium. The cells can be genetically altered with a viral vector or DNA/lipid complex, and then selected for successful transfection by drug-resistant phenotype in the transfected cells. The system allows for bulk proliferation of genetically altered pPS cells as important products for use in human therapy or drug screening.Type: GrantFiled: September 24, 2004Date of Patent: August 19, 2008Assignee: Geron CorporationInventors: Joseph D. Gold, Melissa K. Carpenter, Margaret S. Inokuma, Chunhui Xu
-
Patent number: 7410798Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.Type: GrantFiled: September 4, 2002Date of Patent: August 12, 2008Assignee: Geron CorporationInventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
-
Patent number: 7282366Abstract: It has been discovered that when pluripotent stem cells are cultured in the presence of a hepatocyte differentiation agent, a population of cells is derived that has a remarkably high proportion of cells with phenotypic characteristics of liver cells. In one example, human embryonic stem cells are allowed to form embryoid bodies, and then combined with the differentiation agent n-butyrate, optionally supplemented with maturation factors. In another example, n-butyrate is added to human embryonic stem cells in feeder-free culture. Either way, a remarkably uniform cell population is obtained, which is predominated by cells with morphological features of hepatocytes, expressing surface markers characteristic of hepatocytes, and having enzymatic and biosynthetic activity important for liver function.Type: GrantFiled: March 1, 2002Date of Patent: October 16, 2007Assignee: Geron CorporationInventors: Lakshmi Rambhatla, Melissa K. Carpenter
-
Patent number: 7256042Abstract: It has been discovered that when pluripotent stem cells are cultured in the presence of a hepatocyte differentiation agent, a population of cells is derived that has a remarkably high proportion of cells with phenotypic characteristics of liver cells. In one example, human embryonic stem cells are allowed to form embryoid bodies, and then combined with the differentiation agent n-butyrate, optionally supplemented with maturation factors. In another example, n-butyrate is added to human embryonic stem cells in feeder-free culture. Either way, a remarkably uniform cell population is obtained, which is predominated by cells with morphological features of hepatocytes, expressing surface markers characteristic of hepatocytes, and having enzymatic and biosynthetic activity important for liver function.Type: GrantFiled: October 31, 2001Date of Patent: August 14, 2007Assignee: Geron CorporationInventors: Lakshmi Rambhatla, Melissa K. Carpenter
-
Patent number: 7250294Abstract: This invention provides populations of neural progenitor cells and differentiated neurons, obtained by culturing pluripotent cells in special growth cocktails. The technology can be used to produce progenitors that proliferate through at least ˜40 doublings, while maintaining the ability to differentiate into a variety of different neural phenotypes, including dopaminergic neurons. The neural progenitors and terminally differentiated neurons of this invention can be generated in large quantities for use in drug screening and the treatment of neurological disorders.Type: GrantFiled: May 28, 2002Date of Patent: July 31, 2007Assignee: Geron CorporationInventors: Melissa K. Carpenter, Jerrod J. Denham, Margaret S. Inokuma, R. Scott Thies
-
Patent number: 7041438Abstract: This disclosure provides an improved system for culturing human pluripotent stem (pPS) cells in the absence of feeder cells. The role of the feeder cells can be replaced by supporting the culture on an extracellular matrix, and culturing the cells in a conditioned medium. Permanent cell lines are provided that can produce conditioned medium on a commercial scale. Methods have also been discovered to genetically alter pPS cells by introducing the cells with a viral vector or DNA/lipid complex. The system described in this disclosure allows for bulk proliferation of pPS cells for use in studying the biology of pPS cell differentiation, and the production of important products for use in human therapy.Type: GrantFiled: October 23, 2001Date of Patent: May 9, 2006Assignee: Geron CorporationInventors: Melissa K. Carpenter, Margaret S. Inokuma, Chunhui Xu
-
Patent number: 6833269Abstract: This invention provides populations of neural progenitor cells, differentiated neurons, glial cells, and astrocytes. The populations are obtained by culturing stem cell populations (such as embryonic stem cells) in a cocktail of growth conditions that initiates differentiation, and establishes the neural progenitor population. The progenitors can be further differentiated in culture into a variety of different neural phenotypes, including dopaminergic neurons. The differentiated cell populations or the neural progenitors can be generated in large quantities for use in drug screening and the treatment of neurological disorders.Type: GrantFiled: May 31, 2001Date of Patent: December 21, 2004Assignee: Geron CorporationInventor: Melissa K. Carpenter
-
Publication number: 20040022767Abstract: elk ligand (elk-L) polypeptides as well as DNA sequences, vectors and transformed host cells useful in providing elk-L polypeptides. The elk-L polypeptide binds to a cell surface receptor that is a member of the tyrosine kinase receptor family.Type: ApplicationFiled: January 31, 2003Publication date: February 5, 2004Inventors: Stewart D. Lyman, M. Patricia Beckmann, Peter R. Baum, Melissa K. Carpenter
-
Patent number: 6667176Abstract: This disclosure provides a system for obtaining expression libraries from primate pluripotent stem (pPS) cells. pPS cells can be maintained in vitro without requiring a layer of feeder cells to inhibit differentiation. The role of the feeder cells is replaced by several other culture conditions provided in a suitable combination. Conditions that promote pPS cell growth without differentiation include supporting the culture on an extracellular matrix, and culturing the cells in a medium conditioned by another cell type. The cDNA libraries from such cultures are devoid of transcripts of feeder cell origin, relatively uncontaminated by transcripts from differentiated cells, and can have a high proportion of full-length transcripts. Subtraction libraries can also be produced that are enriched for transcripts modulated during differentiation.Type: GrantFiled: October 10, 2000Date of Patent: December 23, 2003Assignee: Geron CorporationInventors: Walter D. Funk, Melissa K. Carpenter, Joseph D. Gold, Margaret S. Inokuma, Chunhui Xu
-
Publication number: 20030211603Abstract: Described in this disclosure is a new process whereby cells of one tissue type can be reprogrammed to produce cells of a different tissue type. Cells from a human donor are reprogrammed by culturing adjacent to primate pluripotent stem cells (in an undifferentiated or newly differentiated state) or in an environment supplemented by components taken from pPS cells. Simultaneously or in a subsequent step, the donor cells can be treated in a manner that enhances differentiation towards a different tissue type. In this manner, patients in need of tissue regeneration can be treated with cells differentiated and reprogrammed from their own autologous cell donation.Type: ApplicationFiled: February 12, 2003Publication date: November 13, 2003Inventors: David J. Earp, Melissa K. Carpenter, Joseph D. Gold, Jane S. Lebkowski, J. Michael Schiff