Patents by Inventor Melissa K. Carpenter

Melissa K. Carpenter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030103949
    Abstract: This invention provides populations of neural progenitor cells and differentiated neurons, obtained by culturing pluripotent cells in special growth cocktails. The technology can be used to produce progenitors that proliferate through at least ˜40 doublings, while maintaining the ability to differentiate into a variety of different neural phenotypes, including dopaminergic neurons. The neural progenitors and terminally differentiated neurons of this invention can be generated in large quantities for use in drug screening and the treatment of neurological disorders.
    Type: Application
    Filed: May 28, 2002
    Publication date: June 5, 2003
    Inventors: Melissa K. Carpenter, Jerrod J. Denham, Margaret S. Inokuma, R. Scott Thies
  • Patent number: 6540992
    Abstract: Elk ligand (Elk-L) polypeptides as well as DNA sequences, vectors and transformed host cells useful in providing elk-L polypeptides are used in methods for enhancing the survival or inhibiting the death of neurons, particularly hippocampal neurons. The elk-L polypeptides bind to a cell surface receptor that is a member of the tyrosine kinase receptor family.
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: April 1, 2003
    Assignee: Genentech, Inc.
    Inventors: Stewart Lyman, M. Patricia Beckmann, Peter R. Baum, Melissa K. Carpenter
  • Publication number: 20030017589
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
    Type: Application
    Filed: September 4, 2002
    Publication date: January 23, 2003
    Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
  • Patent number: 6506574
    Abstract: It has been discovered that when pluripotent stem cells are cultured in the presence of a hepatocyte differentiation agent, a population of cells is derived that has a remarkably high proportion of cells with phenotypic characteristics of liver cells. In one example, human embryonic stem cells are allowed to form embryoid bodies, and then combined with the differentiation agent n-butyrate, optionally supplemented with maturation factors. In another example, n-butyrate is added to human embryonic stem cells in feeder-free culture. Either way, a remarkably uniform cell population is obtained, which is predominated by cells with morphological features of hepatocytes, expressing surface markers characteristic of hepatocytes, and having enzymatic and biosynthetic activity important for liver function.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: January 14, 2003
    Assignee: Geron Corporation
    Inventors: Lakshmi Rambhatla, Melissa K. Carpenter
  • Publication number: 20030003573
    Abstract: It has been discovered that when pluripotent stem cells are cultured in the presence of a hepatocyte differentiation agent, a population of cells is derived that has a remarkably high proportion of cells with phenotypic characteristics of liver cells. In one example, human embryonic stem cells are allowed to form embryoid bodies, and then combined with the differentiation agent n-butyrate, optionally supplemented with maturation factors. In another example, n-butyrate is added to human embryonic stem cells in feeder-free culture. Either way, a remarkably uniform cell population is obtained, which is predominated by cells with morphological features of hepatocytes, expressing surface markers characteristic of hepatocytes, and having enzymatic and biosynthetic activity important for liver function.
    Type: Application
    Filed: March 1, 2002
    Publication date: January 2, 2003
    Inventors: Lakshmi Rambhatle, Melissa K. Carpenter
  • Publication number: 20020168766
    Abstract: This disclosure provides a system for obtaining genetically altered primate pluripotent stem (pPS) cells. The pPS cells are maintained in an undifferentiated state by culturing on a feeder cell line that has been immortalized and altered with drug resistance genes. Alternatively, the role of the feeder cells is replaced by supporting the culture on an extracellular matrix, and culturing the cells in a conditioned medium. The cells can be genetically altered with a viral vector or DNA/lipid complex, and then selected for successful transfection by drug-resistant phenotype in the transfected cells. The system allows for bulk proliferation of genetically altered pPS cells as important products for use in human therapy or drug screening.
    Type: Application
    Filed: May 4, 2001
    Publication date: November 14, 2002
    Inventors: Joseph D. Gold, Melissa K. Carpenter, Margaret S. Inokuma, Chunhui Xu
  • Publication number: 20020160511
    Abstract: It has been discovered that when pluripotent stem cells are cultured in the presence of a hepatocyte differentiation agent, a population of cells is derived that has a remarkably high proportion of cells with phenotypic characteristics of liver cells. In one example, human embryonic stem cells are allowed to form embryoid bodies, and then combined with the differentiation agent n-butyrate, optionally supplemented with maturation factors. In another example, n-butyrate is added to human embryonic stem cells in feeder-free culture. Either way, a remarkably uniform cell population is obtained, which is predominated by cells with morphological features of hepatocytes, expressing surface markers characteristic of hepatocytes, and having enzymatic and biosynthetic activity important for liver function.
    Type: Application
    Filed: October 31, 2001
    Publication date: October 31, 2002
    Inventors: Lakshmi Rambhatla, Melissa K. Carpenter
  • Publication number: 20020151053
    Abstract: This invention provides a system for efficiently producing differentiated cells from pluripotent cells, such as human embryonic stem cells. Rather than permitting the cells to form embryoid bodies according to established techniques, differentiation is effected directly in monolayer culture on a suitable solid surface. The cells are either plated directly onto a differentiation-promoting surface, or grown initially on the solid surface in the absence of feeder cells and then exchanged into a medium that assists in the differentiation process. The solid surface and the culture medium can be chosen to direct differentiation down a particular pathway, generating a cell population that is remarkably uniform. The methodology is well adapted to bulk production of committed precursor and terminally differentiated cells for use in drug screening or regenerative medicine.
    Type: Application
    Filed: March 1, 2002
    Publication date: October 17, 2002
    Inventors: Melissa K. Carpenter, Walter D. Funk, R. Scott Thies
  • Patent number: 6458589
    Abstract: It has been discovered that when pluripotent stem cells are cultured in the presence of a hepatocyte differentiation agent, a population of cells is derived that has a remarkably high proportion of cells with phenotypic characteristics of liver cells. In one example, human embryonic stem cells are allowed to form embryoid bodies, and then combined with the differentiation agent n-butyrate, optionally supplemented with maturation factors. In another example, n-butyrate is added to human embryonic stem cells in feeder-free culture. Either way, a remarkably uniform cell population is obtained, which is predominated by cells with morphological features of hepatocytes, expressing surface markers characteristic of hepatocytes, and having enzymatic and biosynthetic activity important for liver function.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: October 1, 2002
    Assignee: Geron Corporation
    Inventors: Lakshmi Rambhatla, Melissa K. Carpenter
  • Publication number: 20020137204
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem (pPS) cells in the absence of feeder cells. The role of the feeder cells can be replaced by supporting the culture on an extracellular matrix, and culturing the cells in a conditioned medium. Permanent cell lines are provided that can produce conditioned medium on a commercial scale. Methods have also been discovered to genetically alter pPS cells by introducing the cells with a viral vector or DNA/lipid complex. The system described in this disclosure allows for bulk proliferation of pPS cells for use in studying the biology of pPS cell differentiation, and the production of important products for use in human therapy.
    Type: Application
    Filed: October 23, 2001
    Publication date: September 26, 2002
    Inventors: Melissa K. Carpenter, Walter D. Funk, Joseph D. Gold, Margaret S. Inokuma, Chunhui Xu
  • Publication number: 20020090723
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem (pPS) cells in the absence of feeder cells. The role of the feeder cells can be replaced by supporting the culture on an extracellular matrix, and culturing the cells in a conditioned medium. Permanent cell lines are provided that can produce conditioned medium on a commercial scale. Methods have also been discovered to genetically alter pPS cells by introducing the cells with a viral vector or DNA/lipid complex. The system described in this disclosure allows for bulk proliferation of pPS cells for use in studying the biology of pPS cell differentiation, and the production of important products for use in human therapy.
    Type: Application
    Filed: November 26, 2001
    Publication date: July 11, 2002
    Inventors: Melissa K. Carpenter, Margaret S. Inokuma, Chunhui Xu
  • Publication number: 20020081724
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem (pPS) cells in the absence of feeder cells. The role of the feeder cells can be replaced by supporting the culture on an extracellular matrix, and culturing the cells in a conditioned medium. Permanent cell lines are provided that can produce conditioned medium on a commercial scale. Methods have also been discovered to genetically alter pPS cells by introducing the cells with a viral vector or DNA/lipid complex. The system described in this disclosure allows for bulk proliferation of pPS cells for use in studying the biology of pPS cell differentiation, and the production of important products for use in human therapy.
    Type: Application
    Filed: May 16, 2001
    Publication date: June 27, 2002
    Inventors: Melissa K. Carpenter, Walter D. Funk, Joseph D. Gold, Margaret S. Inokuma, Chunhui Xu
  • Publication number: 20020039724
    Abstract: This invention provides populations of neural progenitor cells, differentiated neurons, glial cells, and astrocytes. The populations are obtained by culturing stem cell populations (such as embryonic stem cells) in a cocktail of growth conditions that initiates differentiation, and establishes the neural progenitor population. The progenitors can be further differentiated in culture into a variety of different neural phenotypes, including dopaminergic neurons. The differentiated cell populations or the neural progenitors can be generated in large quantities for use in drug screening and the treatment of neurological disorders.
    Type: Application
    Filed: May 31, 2001
    Publication date: April 4, 2002
    Inventor: Melissa K. Carpenter
  • Publication number: 20020019046
    Abstract: This invention provides a system for efficiently producing differentiated cells from pluripotent cells, such as human embryonic stem cells. Rather than permitting the cells to form embryoid bodies according to established techniques, differentiation is effected directly in monolayer culture on a suitable solid surface. The cells are either plated directly onto a differentiation-promoting surface, or grown initially on the solid surface in the absence of feeder cells and then exchanged into a medium that assists in the differentiation process. The solid surface and the culture medium can be chosen to direct differentiation down a particular pathway, generating a cell population that is remarkably uniform. The methodology is well adapted to bulk production of committed precursor and terminally differentiated cells for use in drug screening or regenerative medicine.
    Type: Application
    Filed: June 21, 2001
    Publication date: February 14, 2002
    Inventors: Melissa K. Carpenter, Walter D. Funk, R. Scott Thies
  • Publication number: 20020009743
    Abstract: This invention provides populations of neural progenitor cells, differentiated neurons, glial cells, and astrocytes. The populations are obtained by culturing stem cell populations (such as embryonic stem cells) in a cocktail of growth conditions that initiates differentiation, and establishes the neural progenitor population. The progenitors can be further differentiated in culture into a variety of different neural phenotypes, including dopaminergic neurons. The differentiated cell populations or the neural progenitors can be generated in large quantities for use in drug screening and the treatment of neurological disorders.
    Type: Application
    Filed: May 16, 2001
    Publication date: January 24, 2002
    Inventor: Melissa K. Carpenter
  • Patent number: 5512457
    Abstract: elk ligand (elk-L) polypeptides as well as DNA sequences, vectors and transformed host cells useful in providing elk-L polypeptides. The elk-L polypeptide binds to a cell surface receptor that is a member of the tyrosine kinase receptor family.
    Type: Grant
    Filed: March 15, 1994
    Date of Patent: April 30, 1996
    Assignee: Immunex Corporation
    Inventors: Stewart Lyman, M. Patricia Beckmann, Peter R. Baum, Melissa K. Carpenter