Patents by Inventor Michael C. Johnson

Michael C. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10170657
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 1, 2019
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Publication number: 20180286995
    Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 4, 2018
    Inventors: MICHAEL C. JOHNSON, TAIQING QIU, DAVID D. SMITH, PETER JOHN COUSINS, STAFFAN WESTERBERG
  • Patent number: 10088984
    Abstract: A decision based learning apparatus can include a decision module configured to implement a decision model associated with a problem, the decision model including a plurality of decisions associated with solving the problem, a problem profile module configured to store a problem profile, the problem profile defining the problem and a solution to the problem, a learning storage module configured to store at least one learning module associated with at least one of the plurality of decisions, and a decision scenario interface module configured to generate a scenario based on the decision model and the problem profile and to present the scenario based on the decision model and the problem profile to a user.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: October 2, 2018
    Assignee: Brigham Young University
    Inventors: Kenneth J. Plummer, Lane Fischer, Richard Swan, Michael C. Johnson
  • Patent number: 9997652
    Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 12, 2018
    Assignee: SunPower Corporation
    Inventors: Michael C. Johnson, Taiqing Qiu, David D. Smith, Peter John Cousins, Staffan Westerberg
  • Publication number: 20180138328
    Abstract: Methods of fabricating solar cells using UV-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a passivating dielectric layer on a light-receiving surface of a silicon substrate. The method also includes forming an anti-reflective coating (ARC) layer below the passivating dielectric layer. The method also includes exposing the ARC layer to ultra-violet (UV) radiation. The method also includes, subsequent to exposing the ARC layer to ultra-violet (UV) radiation, thermally annealing the ARC layer.
    Type: Application
    Filed: November 11, 2016
    Publication date: May 17, 2018
    Inventors: Yu-Chen Shen, Périne Jaffrennou, Gilles Olav Tanguy Sylvain Poulain, Michael C. Johnson, Seung Bum Rim
  • Publication number: 20180138354
    Abstract: A curing tool for fabricating solar cells using UV-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described herein. In an example, a curing tool combines a UV-exposure stage and one or more of a deposition or an annealing stage to fabricate a solar cell. For example, a radiation curing stage can precede a back end processing stage used to perform operations on a back contact solar cell. The curing tool can therefore be used to perform a method to improve UV stability of solar cells.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 17, 2018
    Inventors: Périne Jaffrennou, Gilles Olav Tanguy Sylvain Poulain, Kieran Mark Tracy, Taiqing Qiu, Michael C. Johnson, Seung Bum Rim
  • Publication number: 20180097131
    Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a solar cell can include a substrate having a light-receiving surface and a back surface. A first doped region of a first conductivity type, wherein the first doped region is disposed in a first portion of the back surface. A first thin dielectric layer disposed over the back surface of the substrate, where a portion of the first thin dielectric layer is disposed over the first doped region of the first conductivity type. A first semiconductor layer disposed over the first thin dielectric layer. A second doped region of a second conductivity type in the first semiconductor layer, where the second doped region is disposed over a second portion of the back surface. A first conductive contact disposed over the first doped region and a second conductive contact disposed over the second doped region.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Seung Bum Rim, Michael C. Johnson
  • Publication number: 20180040746
    Abstract: Methods of passivating light-receiving surfaces of solar cells with high energy gap (Eg) materials, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a light-receiving surface. A passivating dielectric layer is disposed on the light-receiving surface of the substrate. A Group III-nitride material layer is disposed above the passivating dielectric layer. In another example, a solar cell includes a substrate having a light-receiving surface. A passivating dielectric layer is disposed on the light-receiving surface of the substrate. A large direct band gap material layer is disposed above the passivating dielectric layer, the large direct band gap material layer having an energy gap (Eg) of at least approximately 3.3. An anti-reflective coating (ARC) layer disposed on the large direct band gap material layer, the ARC layer comprising a material different from the large direct band gap material layer.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 8, 2018
    Inventors: Michael C. Johnson, Kieran Mark Tracy, Seung Bum Rim, Jara Fernandez Martin, Périne Jaffrennou, Julien Penaud
  • Patent number: 9825191
    Abstract: Methods of passivating light-receiving surfaces of solar cells with high energy gap (Eg) materials, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a light-receiving surface. A passivating dielectric layer is disposed on the light-receiving surface of the substrate. A Group III-nitride material layer is disposed above the passivating dielectric layer. In another example, a solar cell includes a substrate having a light-receiving surface. A passivating dielectric layer is disposed on the light-receiving surface of the substrate. A large direct band gap material layer is disposed above the passivating dielectric layer, the large direct band gap material layer having an energy gap (Eg) of at least approximately 3.3. An anti-reflective coating (ARC) layer disposed on the large direct band gap material layer, the ARC layer comprising a material different from the large direct band gap material layer.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: November 21, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Michael C. Johnson, Kieran Mark Tracy, Seung Bum Rim, Jara Fernandez Martin, Périne Jaffrennou, Julien Penaud
  • Patent number: 9717357
    Abstract: A monitoring system including one or more processors communicatively connected with a memory, one or more output interfaces, one or more connectivity interfaces and one or more sensors, is attached to a clothing frame. The one or more sensors sense one or more indicators of a status of a clothing item attached to the clothing frame, the one or more sensors attached to the clothing frame and connected to one or more processors, one or more output interfaces, and one or more connectivity interfaces. The monitoring system determines the status information for the clothing item based on the one or more indicators. The monitoring system selectively adjusts an output interface to display the status information. The monitoring system communicates the status information to one or more additional clothing frames via the one or more connectivity interfaces.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 1, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael C. Johnson, Travis Longenbach, Nicolas E. Pizzuti
  • Publication number: 20170149383
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Patent number: 9564854
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: February 7, 2017
    Assignee: SunPower Corporation
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Publication number: 20170000277
    Abstract: A monitoring system including one or more processors communicatively connected with a memory, one or more output interfaces, one or more connectivity interfaces and one or more sensors, is attached to a clothing frame. The one or more sensors sense one or more indicators of a status of a clothing item attached to the clothing frame, the one or more sensors attached to the clothing frame and connected to one or more processors, one or more output interfaces, and one or more connectivity interfaces. The monitoring system determines the status information for the clothing item based on the one or more indicators. The monitoring system selectively adjusts an output interface to display the status information. The monitoring system communicates the status information to one or more additional clothing frames via the one or more connectivity interfaces.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: MICHAEL C. JOHNSON, TRAVIS LONGENBACH, NICOLAS E. PIZZUTI
  • Publication number: 20160380124
    Abstract: Methods of fabricating a solar cell, and resulting solar cell are described. In an example, the method for fabricating a solar cell include forming an oxide region over a light receiving region of a silicon substrate. The method can include forming an interfacial region over the light receiving surface of the silicon substrate. The method can also include forming a first surface region comprising aluminum oxide over the interfacial region and forming a second surface region over the first surface region. In some embodiments, the first surface region can have a thickness greater than the second surface region. In one embodiment, the second surface region can have a thickness greater than the thickness of the first surface region.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Michael C. Johnson, Julien Penaud, Jara Fernandez Martin, Perine Jaffrennou
  • Publication number: 20160329864
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Application
    Filed: May 6, 2015
    Publication date: November 10, 2016
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Publication number: 20160321547
    Abstract: A computer receives information detailing the wardrobe of the user, including apparel and accessories, stored in a wardrobe database. The computer receives the schedule of the user and searches the schedule for keywords associated with dress codes and locational information in order to identify the dress code and locations of scheduled events. The computer cross references the determined dress code and weather conditions with suitable clothing in the wardrobe of the user then sends a signal to receivers in the wardrobe to indicate to the user which articles of clothing are appropriate for the weather and occasions of a particular day.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 3, 2016
    Inventors: Michael C. Johnson, Travis S. Longenbach, Nicolas E. Pizzuti
  • Publication number: 20160284917
    Abstract: Methods of fabricating solar cells having passivation layers, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a first surface and a second surface. A plurality of emitter regions is disposed on the first surface of the substrate and spaced apart from one another. An amorphous silicon passivation layer is disposed on each of the plurality of emitter regions and between each of the plurality of emitter regions, directly on an exposed portion of the first surface of the substrate.
    Type: Application
    Filed: March 27, 2015
    Publication date: September 29, 2016
    Inventors: Seung Bum Rim, David D. Smith, Michael C. Johnson, Christine Bourdet Simmons
  • Publication number: 20160284881
    Abstract: Solar cells having epitaxial passivation layers are described. In an example, a solar cell includes a crystalline substrate. An epitaxial passivation layer is disposed directly on the crystalline substrate. A plurality of alternating N-type and P-type emitter regions is disposed on the epitaxial passivation layer.
    Type: Application
    Filed: March 23, 2015
    Publication date: September 29, 2016
    Inventors: Michael C. Johnson, David D. Smith, Seung Bum Rim
  • Publication number: 20160284923
    Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.
    Type: Application
    Filed: September 25, 2015
    Publication date: September 29, 2016
    Inventors: Michael C. Johnson, Taiqing Qiu, David D. Smith, Peter John Cousins, Staffan Westerberg
  • Patent number: 9393517
    Abstract: An air compression system and method for an air separation plant in which air is compressed in a series of compression stages and a temperature swing adsorption unit adsorbs water vapor and carbon dioxide. The temperature swing adsorption unit is situated at a location of the compression stages such that air pressure upon entry into the adsorbent beds is between about 400 psia and about 600 psia. Each of the adsorbent beds of the unit have a minimum transverse cross-sectional flow area that will set the air velocity of the air to a level below that at which adsorbent bed fluidization would occur. Such operation allows fabrication costs of the adsorbent beds to be reduced because less adsorbent and smaller adsorbent beds are required while power consumption will be at a minimum.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: July 19, 2016
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Mohamed Hashi, Michael C. Johnson, John Royal