Patents by Inventor Michael J. Hochberg

Michael J. Hochberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200026002
    Abstract: A compact, low-loss and wavelength insensitive Y-junction for submicron silicon waveguides. The design was performed using FDTD and particle swarm optimization (PSO). The device was fabricated in a 248 nm CMOS line. Measured average insertion loss is 0.28±0.02 dB across an 8-inch wafer. The device footprint is less than 1.2 ?m×2 ?m, orders of magnitude smaller than MMI and directional couplers.
    Type: Application
    Filed: December 10, 2018
    Publication date: January 23, 2020
    Inventors: Yang Liu, Yangjin Ma, Ruizhi Shi, Michael J. Hochberg, Yi Zhang, Shuyu Yang, Thomas Wetteland Baehr-Jones
  • Publication number: 20200028008
    Abstract: A Ge-on-Si photodetector constructed without doping or contacting Germanium by metal is described. Despite the simplified fabrication process, the device has responsivity of 1.24 A/W, corresponding to 99.2% quantum efficiency. Dark current is 40 nA at ?4 V reverse bias. 3-dB bandwidth is 30 GHz.
    Type: Application
    Filed: November 30, 2018
    Publication date: January 23, 2020
    Inventors: Thomas Wetteland Baehr-Jones, Yi Zhang, Michael J. Hochberg, Ari Novack
  • Patent number: 10530485
    Abstract: A high data rate, high sensitivity, low power optical link using low-bandwidth components and low-bandwidth E/O drivers and receivers and method of building same. The method is based on the idea of making the optical part of the link look like a bandwidth limited lossy electrical channel, so that the powerful equalization methods used in the wireline electrical links can be applied to recover the transmitted data in a situation with low bandwidth and/or high loss and strong inter-symbol interference. Linear and non-linear optical channel components, E/O drivers and receivers can benefit from the apparatus and the methods of the invention.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: January 7, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Alexander Rylyakov, Richard Younce, Ran Ding, Peter D. Magill, Hao Li, Michael J. Hochberg
  • Patent number: 10529878
    Abstract: A Ge-on-Si photodetector constructed without doping or contacting Germanium by metal is described. Despite the simplified fabrication process, the device has responsivity of 1.24 A/W, corresponding to 99.2% quantum efficiency. Dark current is 40 nA at ?4 V reverse bias. 3-dB bandwidth is 30 GHz.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: January 7, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Wetteland Baehr-Jones, Yi Zhang, Michael J. Hochberg, Ari Novack
  • Patent number: 10530487
    Abstract: A distributed traveling-wave Mach-Zehnder modulator driver having a plurality of modulation stages that operate cooperatively (in-phase) to provide a signal suitable for use in a 100 Gb/s optical fiber transmitter at power levels that are compatible with conventional semiconductor devices and conventional semiconductor processing is described.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 7, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Ran Ding, Thomas Wetteland Baehr-Jones, Michael J. Hochberg, Alexander Rylyakov
  • Publication number: 20200003954
    Abstract: An integrated polarization splitter and rotator (PSR) employs the TE0 and TE1 modes of propagating light, rather than the TE0 and TM0 modes used in conventional prior art PSR. The integrated PSR exhibits appreciably flatter wavelength response because it does not require a directional coupler to de-multiplex incoming polarizations. The PSR allows tuning of the TM0 loss to reduce polarization dependent loss (PDL). This integrated polarization splitter and rotator is applicable to all integrated platforms including Silicon-on-Insulator (SOI) and III-V semiconductor compound systems. The PSR may be very compact (12×2 ?m2), and provides low loss (<0.3 dB across the C-band) and ultra-broadband operation. The PSR also affords better control of polarization dependent losses.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: Yang Liu, Yangjin Ma, Michael J. Hochberg
  • Publication number: 20200004055
    Abstract: An optical modulator apparatus may include a plurality of segment drivers, each segment driver having a unique offset voltage and driving but a portion or a segment of an electro-optical modulator. A modulating electrical signal may be applied to the segment drivers via a plurality of electrical delays. Parameters of the segment drivers may be selected so as to approximate a pre-defined transfer function, which may include a linear or a non-linear transfer function.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Ran Ding, Thomas Wetteland Baehr-Jones, Peter D. Magill, Michael J. Hochberg, Alexander Rylyakov
  • Publication number: 20190391324
    Abstract: Back scattering in an optical waveguide at an operating wavelength is controlled by adjusting an optical phase of light propagating in the waveguide at one or more locations along the waveguide. A portion of the back scattered light is tapped off near an input port and coupled into a photodetector. A controller detects changes in the photodetector signal and adjusts an optical phase tuner configured to control the optical phase of light in the waveguide at the selected location or locations. The optical phase tuner may be configured to vary the refractive index of at least a portion of the waveguide.
    Type: Application
    Filed: July 31, 2019
    Publication date: December 26, 2019
    Inventors: Thomas Wetteland Baehr-Jones, Matthew Akio Streshinsky, Yang Liu, Michael J. Hochberg, Ran Ding, Alexei Tager
  • Patent number: 10514499
    Abstract: A photonic chip includes a device layer and a port layer, with an optical port located at the port layer. Inter-layer optical couplers are provided for coupling light between the device and port layers. The inter-layer couplers may be configured to couple signal light but block pump light or other undesired wavelength from entering the device layer, operating as an input filter. The port layer may accommodate other light pre-processing functions, such as optical power splitting, that are undesirable in the device layer.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: December 24, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ari Novack, Ruizhi Shi, Alexandre Horth, Ran Ding, Michael J. Hochberg
  • Publication number: 20190384008
    Abstract: A multimode interference (MMI) coupler with an MMI region of curved edges, and a method of design and manufacturing by using a computerized optimization algorithm to determine a favorable set of segment widths for the MMI region for a predefined set of coupler design parameters.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: Yangjin Ma, Michael J. Hochberg
  • Publication number: 20190379460
    Abstract: Described are various embodiments of a dual optical modulator, system and method. In one embodiment, an optical modulator modulates an input optical signal having a designated optical frequency. The modulator comprises first and second tunable modulators operable around the optical frequency and operatively disposed between a bus waveguide path and an opposed waveguide path. The modulator further comprises a relative optical phase-shifter optically coupled between the tunable modulators so to impart a relative optical phase shift between the bus waveguide path and the opposed waveguide path. The tunable modulators are respectively driveable to modulate a respective resonance thereof in complimentary directions relative to the optical frequency and thereby resonantly redirect a selectable portion of the input optical signal along the opposed waveguide path such that the relative optical phase shift is imparted thereto for output.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 12, 2019
    Inventors: Thomas Wetteland Baehr-Jones, Michael J. Hochberg, Yang Liu
  • Patent number: 10502895
    Abstract: A low loss high extinction ratio on-chip polarizer. The polarizer includes an input waveguide taper having an outer waveguiding region that widens in the direction of light propagation along at least a portion of the taper length, and a core waveguiding region that narrows in the direction of light propagation along at least a portion of the taper length, so as to selectively squeeze out light of undesired modes into the outer regions while preserving light of a desired mode in the waveguide core. An output filter section is provided to prevent light from reentering the output waveguide after being squeezed out. An integrated light absorber/deflector may be coupled to the outer waveguiding regions.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: December 10, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Thomas Wetteland Baehr-Jones, Yangjin Ma, Yang Liu, Michael J. Hochberg, Matthew Akio Streshinsky, Alexandre Horth
  • Publication number: 20190369029
    Abstract: A test system for determining a surface characteristic of a chip facet comprises a chip, which has a facet and includes a waveguide, a detector, and a processor. The on-chip waveguide is configured to direct test light towards the facet, where a portion of the test light is reflected and a portion of the test light is transmitted. The detector is configured to measure an amount of the reflected portion or the transmitted portion, and the processor is configured to determine a surface characteristic of the facet, such as a facet angle, a facet curvature, and/or a facet roughness, on the basis of the measured amount.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Inventors: Matthew Akio Streshinsky, Ari Novack, Michael J. Hochberg
  • Publication number: 20190339547
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A portion of the modulator light is mixed with reference light and converted to one or more electrical feedback signals. An electrical feedback circuit controls the modulator bias responsive to the feedback signals.
    Type: Application
    Filed: July 22, 2019
    Publication date: November 7, 2019
    Inventors: Matthew Akio Streshinsky, Ari Novack, Kishore Padmaraju, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 10451804
    Abstract: An integrated polarization splitter and rotator (PSR) employs the TE0 and TE1 modes of propagating light, rather than the TE0 and TM0 modes used in conventional prior art PSR. The integrated PSR exhibits appreciably flatter wavelength response because it does not require a directional coupler to de-multiplex incoming polarizations. The PSR allows tuning of the TM0 loss to reduce polarization dependent loss (PDL). This integrated polarization splitter and rotator is applicable to all integrated platforms including Silicon-on-Insulator (SOI) and III-V semiconductor compound systems. The PSR may be very compact (12×2 ?m2), and provides low loss (<0.3 dB across the C-band) and ultra-broadband operation. The PSR also affords better control of polarization dependent losses.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 22, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yang Liu, Yangjin Ma, Michael J. Hochberg
  • Patent number: 10451903
    Abstract: An optical modulator apparatus may include a plurality of segment drivers, each segment driver having a unique offset voltage and driving but a portion or a segment of an electro-optical modulator. A modulating electrical signal may be applied to the segment drivers via a plurality of electrical delays. Parameters of the segment drivers may be selected so as to approximate a pre-defined transfer function, which may include a linear or a non-linear transfer function.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: October 22, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ran Ding, Thomas Wetteland Baehr-Jones, Peter D. Magill, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 10444451
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: October 15, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Patent number: 10436986
    Abstract: A multimode interference (MMI) coupler with an MMI region of curved edges, and a method of design and manufacturing by using a computerized optimization algorithm to determine a favorable set of segment widths for the MMI region for a predefined set of coupler design parameters.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: October 8, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Yangjin Ma, Michael J. Hochberg
  • Patent number: 10439728
    Abstract: Described are various embodiments of a dual optical modulator, system and method. In one embodiment, an optical modulator modulates an input optical signal having a designated optical frequency. The modulator comprises first and second tunable modulators operable around the optical frequency and operatively disposed between a bus waveguide path and an opposed waveguide path. The modulator further comprises a relative optical phase-shifter optically coupled between the tunable modulators so to impart a relative optical phase shift between the bus waveguide path and the opposed waveguide path. The tunable modulators are respectively driveable to modulate a respective resonance thereof in complimentary directions relative to the optical frequency and thereby resonantly redirect a selectable portion of the input optical signal along the opposed waveguide path such that the relative optical phase shift is imparted thereto for output.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: October 8, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Wetteland Baehr-Jones, Michael J. Hochberg, Yang Liu
  • Patent number: 10429313
    Abstract: A test system for determining a surface characteristic of a chip facet includes an on-chip waveguide, a detector, and a processor. The on-chip waveguide is configured to direct test light towards the facet, where a portion of the test light is reflected and a portion of the test light is transmitted. The detector is configured to measure an amount of the reflected portion or the transmitted portion, and the processor is configured to determine a surface characteristic of the facet, such as a facet angle, a facet curvature, and/or a facet roughness, on the basis of the measured amount.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: October 1, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Matthew Akio Streshinsky, Ari Novack, Michael J. Hochberg