Patents by Inventor Michael Patra

Michael Patra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240012333
    Abstract: An illumination optical unit serves for use in a lithographic projection exposure apparatus. The illumination optical unit serves to guide illumination light from a light source toward an object field. A structured object is arranged in the object field. The illumination optical unit is embodied such that the object field illuminated by the illumination optical unit has a field extent along a first field coordinate and a field extent, shorter in comparison, along a second field coordinate perpendicular thereto. The illumination optical unit is embodied such that the illumination light which impinges on the object field is polarized in a polarization direction that extends parallel to the shorter field extent along the second field coordinate. This yields an illumination optical unit which, firstly, can offer a high structure resolution and, secondly, can impose manageable properties on the optical design.
    Type: Application
    Filed: September 12, 2023
    Publication date: January 11, 2024
    Inventor: Michael Patra
  • Patent number: 11720028
    Abstract: A measurement illumination optical unit guides illumination light into an object field of a projection exposure apparatus for EUV lithography. The illumination optical unit has a field facet mirror with a plurality of field facets and a pupil facet mirror with a plurality of pupil facets. The latter serve for overlaid imaging in the object field of field facet images of the field facets. A field facet imaging channel of the illumination light is guided via any one field facet and any one pupil facet. A field stop specifies a field boundary of an illumination field in the object plane. The illumination field has a greater extent along one field dimension than any one of the field facet images. At least some of the field facets include tilt actuators which help guide the illumination light into the illumination field via various field facets and one and the same pupil facet.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: August 8, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Thomas Fischer, Lars Wischmeier, Michael Patra, Hubert Holderer
  • Publication number: 20230221649
    Abstract: A micromirror array is a constituent part of an illumination-optical component of a projection exposure apparatus for projection lithography. A multiplicity of micromirrors are in groups in a plurality of mirror modules, each of which has a rectangular module border. The mirror modules are in module columns. At least some of the module columns are displaced with respect to one another along a column boundary line so that at least some of the mirror modules adjacent to one another over the boundary line are arranged displaced with respect to one another. Their module border sides running transversely to the boundary line are not aligned flush with one another. This micromirror array can have a relatively standardized production and can have a relatively small reflection folding angle on the object if the micromirror array represents a final illumination-optical component upstream of a reflective object to be illuminated.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 13, 2023
    Inventor: Michael Patra
  • Patent number: 11350513
    Abstract: A stop is configured to be arranged in a constriction of an EUV illumination light beam between an EUV light source for EUV illumination light and an EUV illumination optical unit. The stop has a beam entrance section, a beam exit section and an intervening beam tube section. The entrance section has a cross section that decreases in the propagation direction of the EUV illumination light beam. The cross section of the exit section increases in the propagation direction. The cross section of the tube section is constant. An inner wall of the beam tube section is embodied as reflective for the EUV illumination light. The result is a stop that can have a defined predetermination of the illumination light beam in conjunction with a good thermal loading capacity of the stop.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: May 31, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Publication number: 20220163897
    Abstract: An optical illumination system guides EUV radiation between a source region of an EUV light source and an object field, in which an object to be imaged is arrangeable. The illumination system has at least two EUV mirror components which reflect the EUV radiation and sequentially guide the EUV radiation between the source region and the object field. An optical diffraction component for suppressing extraneous light radiation is arranged on each of the two EUV mirror components. The two optical diffraction components are designed to suppress different extraneous light wavelengths. A first of the two optical diffraction components, which is arranged on a first of the EUV mirror components, is a grating with at least one first structure depth. A second of the two optical diffraction components, which is arranged on a second of the EUV mirror components, is a grating with at least one second different structure depth. The result can be improved suppression of extraneous light.
    Type: Application
    Filed: February 8, 2022
    Publication date: May 26, 2022
    Inventor: Michael Patra
  • Publication number: 20220057717
    Abstract: A measurement illumination optical unit guides illumination light into an object field of a projection exposure apparatus for EUV lithography. The illumination optical unit has a field facet mirror with a plurality of field facets and a pupil facet mirror with a plurality of pupil facets. The latter serve for overlaid imaging in the object field of field facet images of the field facets. A field facet imaging channel of the illumination light is guided via any one field facet and any one pupil facet. A field stop specifies a field boundary of an illumination field in the object plane. The illumination field has a greater extent along one field dimension than any one of the field facet images. At least some of the field facets include tilt actuators which help guide the illumination light into the illumination field via various field facets and one and the same pupil facet.
    Type: Application
    Filed: October 26, 2021
    Publication date: February 24, 2022
    Inventors: Thomas Fischer, Lars Wischmeier, Michael Patra, Hubert Holderer
  • Patent number: 11137688
    Abstract: An optical system transfers original structure portions (13) of a lithography mask (10), which have an x/y-aspect ratio of greater than 4:1, and are aligned on the lithography mask, separated respectively by separating portions (14) that carry no structures to be imaged. The optical system transfers the original structure portions onto image portions (31) of a substrate (26). Each of the original structure portions is transferred to a separate image portion. The image portions onto which the original structure portions are transferred are arranged in a line next to one another. An associated projection optical unit may have an anamorphic embodiment with different imaging scales for two mutually perpendicular field coordinates specifically, one that is reducing for one of the field coordinates and the other is magnifying for the other field coordinates.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: October 5, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Michael Patra, Johannes Ruoff
  • Publication number: 20210084741
    Abstract: A stop is configured to be arranged in a constriction of an EUV illumination light beam between an EUV light source for EUV illumination light and an EUV illumination optical unit. The stop has a beam entrance section, a beam exit section and an intervening beam tube section. The entrance section has a cross section that decreases in the propagation direction of the EUV illumination light beam. The cross section of the exit section increases in the propagation direction. The cross section of the tube section is constant. An inner wall of the beam tube section is embodied as reflective for the EUV illumination light. The result is a stop that can have a defined predetermination of the illumination light beam in conjunction with a good thermal loading capacity of the stop.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Inventor: Michael Patra
  • Publication number: 20210055661
    Abstract: An optical system transfers original structure portions (13) of a lithography mask (10), which have an x/y-aspect ratio of greater than 4:1, and are aligned on the lithography mask, separated respectively by separating portions (14) that carry no structures to be imaged. The optical system transfers the original structure portions onto image portions (31) of a substrate (26). Each of the original structure portions is transferred to a separate image portion. The image portions onto which the original structure portions are transferred are arranged in a line next to one another. An associated projection optical unit may have an anamorphic embodiment with different imaging scales for two mutually perpendicular field coordinates specifically, one that is reducing for one of the field coordinates and the other is magnifying for the other field coordinates.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Inventors: Michael PATRA, Johannes RUOFF
  • Patent number: 10928733
    Abstract: An illumination optical unit for projection lithography illuminates an object field with illumination light along an illumination beam path. The arrangement of field facets of a field facet mirror and also of pupil facets of a pupil facet mirror is such that an illumination channel is guided over each of them. The field facet mirror images a light source image along in each case one illumination channel onto one of the pupil facets. The pupil facet mirror superimposedly images of the field facets into the object field. The illumination optical unit is designed for the settable specification of a spatial resolution of an illumination light illumination of an entrance pupil of a projection optical unit arranged downstream of the object field in the illumination light beam path. The result of this is an illumination optical unit with which illumination light can be used efficiently for high-contrast imaging of the structures to be projected.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: February 23, 2021
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Patent number: 10928734
    Abstract: An optical assembly guides an output beam of a free electron laser to a downstream illumination-optical assembly of an EUV projection exposure apparatus. The optical assembly has first and a second GI mirrors, each with a structured reflection surface to be impinged upon by the output beam. A first angle of incidence on the first GI mirror is between one mrd and 10 mrad. A maximum first scattering angle is produced, amounting to between 50% and 100% of the first angle of incidence. A second angle of incidence on the second GI mirror is at least twice as large as the first angle of incidence. A maximum second scattering angle of the output beam amounts to between 30% and 100% of the second angle of incidence. The two planes of incidence on the two GI mirrors include an angle with respect to one another that is greater than 45°.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: February 23, 2021
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Patent number: 10871717
    Abstract: An optical system for a microlithographic projection exposure apparatus for operation in the EUV includes a polarization-influencing arrangement having first and one second double reflection surface units, each having first and second reflection surfaces, in each case arranged directly adjacent at a distance d1 and at an angle of 0°±10° relative to one another. The first reflection surface of the first double reflection surface unit and the second reflection surface of the second double reflection surface unit are arranged directly adjacent at a distance d2 and at an angle of 0°±10° relative to one another, with d2>5*d1. Light incident on the first reflection surfaces forms an angle of 43°±10° with the first reflection surfaces. Light incident on the first reflection surface of the first double reflection surface unit is reflected toward the second reflection surface of the second double reflection surface unit.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: December 22, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Publication number: 20200348600
    Abstract: An illumination optical unit for projection lithography illuminates an object field with illumination light along an illumination beam path. The arrangement of field facets of a field facet mirror and also of pupil facets of a pupil facet mirror is such that an illumination channel is guided over each of them. The field facet mirror images a light source image along in each case one illumination channel onto one of the pupil facets. The pupil facet mirror superimposedly images of the field facets into the object field. The illumination optical unit is designed for the settable specification of a spatial resolution of an illumination light illumination of an entrance pupil of a projection optical unit arranged downstream of the object field in the illumination light beam path. The result of this is an illumination optical unit with which illumination light can be used efficiently for high-contrast imaging of the structures to be projected.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventor: Michael Patra
  • Patent number: 10802403
    Abstract: A method for the microlithographic production of microstructured components, includes: providing a wafer, to which a photoresist is applied at least partly; providing a mask having structures to be imaged; providing a projection exposure apparatus having an illumination unit and a projection lens; exposing the photoresist by projecting at least one part of the mask onto a region of the photoresist with the aid of the projection exposure apparatus; and ascertaining a deviation between a structure property of the structures produced on the exposed wafer from a predefined desired structure property. Ascertaining includes: determining at least one property of a light field used for exposing the photoresist applied to the wafer. The method further includes aftertreating the wafer on the basis of the ascertained deviation, and chemically developing the after treated wafer.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: October 13, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Publication number: 20200218164
    Abstract: An optical system for a microlithographic projection exposure apparatus for operation in the EUV includes a polarization-influencing arrangement having first and one second double reflection surface units, each having first and second reflection surfaces, in each case arranged directly adjacent at a distance d1 and at an angle of 0°±10° relative to one another. The first reflection surface of the first double reflection surface unit and the second reflection surface of the second double reflection surface unit are arranged directly adjacent at a distance d2 and at an angle of 0°±10° relative to one another, with d2>5*d1. Light incident on the first reflection surfaces forms an angle of 43°±10° with the first reflection surfaces. Light incident on the first reflection surface of the first double reflection surface unit is reflected toward the second reflection surface of the second double reflection surface unit.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 9, 2020
    Inventor: Michael Patra
  • Patent number: 10678144
    Abstract: The disclosure provides a projection exposure method for exposing a substrate arranged in the region of an image plane of a projection lens with at least one image of a pattern of a mask arranged in the region of an object plane of the projection lens. A substrate is coated with a radiation-sensitive multilayer system including a first photoresist layer composed of a first photoresist material and, between the first photoresist layer and the substrate and a separately applied second photoresist layer composed of a second photoresist material. The first photoresist material has a relatively high first sensitivity in a first wavelength range and a second sensitivity, which is lower relative to the first sensitivity, in a second wavelength range separate from the first wavelength range. The second photoresist material has an exposure-suitable second sensitivity in the second wavelength range.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 9, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Publication number: 20200096877
    Abstract: The disclosure provides a projection exposure method for exposing a substrate arranged in the region of an image plane of a projection lens with at least one image of a pattern of a mask arranged in the region of an object plane of the projection lens. A substrate is coated with a radiation-sensitive multilayer system including a first photoresist layer composed of a first photoresist material and, between the first photoresist layer and the substrate and a separately applied second photoresist layer composed of a second photoresist material. The first photoresist material has a relatively high first sensitivity in a first wavelength range and a second sensitivity, which is lower relative to the first sensitivity, in a second wavelength range separate from the first wavelength range. The second photoresist material has an exposure-suitable second sensitivity in the second wavelength range.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 26, 2020
    Inventor: Michael Patra
  • Publication number: 20200019064
    Abstract: An optical assembly guides an output beam of a free electron laser to a downstream illumination-optical assembly of an EUV projection exposure apparatus. The optical assembly has first and a second GI mirrors, each with a structured reflection surface to be impinged upon by the output beam. A first angle of incidence on the first GI mirror is between one mrd and 10 mrad. A maximum first scattering angle is produced, amounting to between 50% and 100% of the first angle of incidence. A second angle of incidence on the second GI mirror is at least twice as large as the first angle of incidence. A maximum second scattering angle of the output beam amounts to between 30% and 100% of the second angle of incidence. The two planes of incidence on the two GI mirrors include an angle with respect to one another that is greater than 45°.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventor: Michael Patra
  • Patent number: 10514611
    Abstract: The disclosure provides a projection exposure method for exposing a substrate arranged in the region of an image plane of a projection lens with at least one image of a pattern of a mask arranged in the region of an object plane of the projection lens. A substrate is coated with a radiation-sensitive multilayer system including a first photoresist layer composed of a first photoresist material and, between the first photoresist layer and the substrate and a separately applied second photoresist layer composed of a second photoresist material. The first photoresist material has a relatively high first sensitivity in a first wavelength range and a second sensitivity, which is lower relative to the first sensitivity, in a second wavelength range separate from the first wavelength range. The second photoresist material has an exposure-suitable second sensitivity in the second wavelength range.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: December 24, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Publication number: 20190243248
    Abstract: A method for the microlithographic production of microstructured components, includes: providing a wafer, to which a photoresist is applied at least partly; providing a mask having structures to be imaged; providing a projection exposure apparatus having an illumination unit and a projection lens; exposing the photoresist by projecting at least one part of the mask onto a region of the photoresist with the aid of the projection exposure apparatus; and ascertaining a deviation between a structure property of the structures produced on the exposed wafer from a predefined desired structure property. Ascertaining includes: determining at least one property of a light field used for exposing the photoresist applied to the wafer. The method further includes aftertreating the wafer on the basis of the ascertained deviation, and chemically developing the after treated wafer.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventor: Michael Patra