Patents by Inventor Michael Paul Rowe

Michael Paul Rowe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10910153
    Abstract: Thermally annealed superparamagnetic core shell nanoparticles of an iron-cobalt alloy core and a silicon dioxide shell having high magnetic saturation are provided. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: February 2, 2021
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Michael Paul Rowe, Sean Evan Sullivan, Daisuke Okamoto
  • Publication number: 20200398533
    Abstract: Composite materials include a steel matrix with structural aramid formed of individual fibers penetrating into the matrix at substantial depth. The fibers typically have defined diameters and large ratios of penetration depth to fiber diameter. Specified methods for forming the composite materials have a unique ability to achieve the large ratios of penetration depth to fiber diameter.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200392305
    Abstract: Composite materials include a steel matrix with structural aramid integrated into, and passing through an entirety of, the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural aramid component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural aramid integrated therein.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventor: Michael Paul Rowe
  • Patent number: 10857504
    Abstract: A co-catalyst system for the removal of NOx from an exhaust gas stream has a layered oxide and a spinel of formula Ni0.15Co0.85CoAlO4. The system converts to nitric oxide to nitrogen gas with high product specificity. The layered oxide is configured to convert NOx in the exhaust gas stream to an N2O intermediate, and the spinel is configured to convert the N2O intermediate to N2.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 8, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Torin C. Peck, Michael Paul Rowe, Michael Jones
  • Patent number: 10859101
    Abstract: A soft-bodied actuator can be configured to be in a pinched or contracted configuration when power is not supplied to the actuator. Thus, a supply of electrical energy is not needed to maintain the actuator in the pinched or contracted configuration. The actuator can include a central bladder. The central bladder can include a flexible casing that defines a central fluid chamber. The central fluid chamber can include a dielectric fluid. A first conductor and a second conductor can be operatively connected to opposite portions of the central bladder. The actuator can be configured such that, in the activated mode, the first and second conductors receive electrical energy from a power source such that they are like charged, causing the first and second conductors to repel each other. The central fluid chamber can include a particulate material to help maintain the central bladder in the pinched configuration.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 8, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Publication number: 20200346284
    Abstract: Carbon fiber reinforced steel matrix composites have carbon fiber impregnated in the steel matrix and chemically bonded to the steel. Chemical bonding is shown by the presence of a unique amorphous carbon layer at the carbon fiber/steel interface, and by canting of steel crystal edges adjacent to the interface. Methods for forming carbon fiber reinforce steel composites include sintering steel nanoparticles around a reinforcing carbon fiber structure, thereby chemically bonding a sintered steel matrix to the carbon fiber. This unique bonding likely contributes to enhanced strength of the composite, in comparison to metal matrix composites formed by other methods.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Michael Paul Rowe, Nikhilendra Singh
  • Patent number: 10814397
    Abstract: A method for synthesizing a reagent complex includes a step of ball-milling a mixture that includes: a powder of a zero-valent element; a hydride molecule; and a nitrile ligand. The method produces a reagent complex having a formula Q0.Xy.Lz, where Q0 is the zero-valent element, X is the hydride molecule, and L is the nitrile ligand. A process for synthesizing nanoparticles composed of the zero-valent element includes a step of adding solvent to the reagent complex. Crystal texture of the nanoparticles is modulated by appropriate selection of the molar ratio nitrile ligand in the reagent complex.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: October 27, 2020
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Manitoba
    Inventors: Elizabeth Marie Skoropata, Michael Paul Rowe, Johan Alexander van Lierop
  • Publication number: 20200298528
    Abstract: Composite materials include a steel matrix with reinforcing carbon fiber formed of individual fibers penetrating into the matrix to substantial depth. The fibers typically have defined diameters and large ratios of penetration depth to fiber diameter. Specified methods for forming the composite materials have a unique ability to achieve the large ratios of penetration depth to fiber diameter.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200299468
    Abstract: Composite materials include a steel matrix with reinforcing carbon fiber integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a reinforcing carbon fiber component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with reinforcing carbon fiber integrated therein.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200299817
    Abstract: Composite materials include a steel matrix with reinforcing carbon fiber integrated into the matrix, and having unreinforced regions suitable for stamping or other deformation. The composite materials have substantially lower density than steel, and are expected to have appreciable strength within regions having the reinforcing carbon fiber, while having greater deformability in unreinforced regions. Methods for forming composite steel composites includes combining at least two laterally spaced apart reinforcing carbon fiber components, such as a carbon fiber weave, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with reinforcing carbon fiber integrated therein, and unreinforced regions located in the lateral spaces between carbon fiber components.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200291201
    Abstract: Composite materials include a steel matrix with structural polymer integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural polymer component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural polymer integrated therein.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 17, 2020
    Inventor: Michael Paul Rowe
  • Patent number: 10774196
    Abstract: Composite materials include a steel matrix with structural polymer integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural polymer component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural polymer integrated therein.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: September 15, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Publication number: 20200277466
    Abstract: Composite materials include a steel matrix with structural polymer integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural polymer component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural polymer integrated therein.
    Type: Application
    Filed: May 12, 2020
    Publication date: September 3, 2020
    Inventor: Michael Paul Rowe
  • Patent number: 10746206
    Abstract: An actuator includes a first enclosure, a dielectric fluid in the first enclosure, and a second enclosure in fluid communication with the first enclosure. An elastic membrane defines at least a portion of the second enclosure. A first electrical conductor is positioned along a first side of the first enclosure. A second electrical conductor is positioned along a second side of the first enclosure opposite the first side. The second conductor is spaced apart from the first conductor. The conductors are connected to a power source. Application of electrical energy to the first and second conductors produces an attractive force between the conductors. Motion of the conductors toward each other pressurizes the dielectric fluid so as to force the dielectric fluid to flow from the first enclosure into the second enclosure. The flow of the dielectric fluid exerts a force on the elastic membrane which expands the elastic membrane.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: August 18, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Jillian M. Jakubiec
  • Publication number: 20200259426
    Abstract: The devices and systems described herein generally relate to programmable surfaces. A set of tiles in conjunction with actuators, allow for the surface to be constantly changeable from a first shape to an unlimited variety of second shapes. Once a desired second shape is achieved, the shape can be held by actuating the actuators. The system can include detection and maintenance of the shapes of the programmable surface by controlling which of the actuators are released and when they are released.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200256357
    Abstract: An actuator includes a first enclosure, a dielectric fluid in the first enclosure, and a second enclosure in fluid communication with the first enclosure. An elastic membrane defines at least a portion of the second enclosure. A first electrical conductor is positioned along a first side of the first enclosure. A second electrical conductor is positioned along a second side of the first enclosure opposite the first side. The second conductor is spaced apart from the first conductor. The conductors are connected to a power source. Application of electrical energy to the first and second conductors produces an attractive force between the conductors. Motion of the conductors toward each other pressurizes the dielectric fluid so as to force the dielectric fluid to flow from the first enclosure into the second enclosure. The flow of the dielectric fluid exerts a force on the elastic membrane which expands the elastic membrane.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Inventors: Michael Paul Rowe, Jillian M. Jakubiec
  • Publication number: 20200251399
    Abstract: A monolithic substrate including a silica material fused to bulk copper is provided for coupling with electronic components, along with methods for making the same. The method includes arranging a base mixture in a die mold. The base mixture includes a bottom portion with copper micron powder and an upper portion with copper nanoparticles. The method includes arranging a secondary mixture on the upper portion of the base mixture. The secondary mixture includes a bottom portion with silica-coated copper nanoparticles and an upper portion with silica nanoparticles. The method includes heating and compressing the base mixture and the secondary mixture in the die mold at a temperature, pressure, and time sufficient to sinter and fuse the base mixture with the secondary mixture to form a monolithic substrate. The resulting monolithic substrate defines a first major surface providing thermal conductivity, and a second major surface providing an electrically resistive surface.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 6, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200238629
    Abstract: Methods for microwave melting of fiber mixtures to form composite materials include placing the fiber mixture in a receptacle located in a microwave oven. The methods further include microwave heating the mixture, causing a heat activated compression mechanism to automatically increase compressive force on the mixture, thereby eliminating air and void volumes. The heat activated compression mechanism can include a shape memory alloy wire connecting first and second compression brackets, or one or more ceramic blocks configured to increase in volume and thereby increase compression on the mixture.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 30, 2020
    Inventors: Umesh N. Gandhi, Michael Paul Rowe, Yuyang Song
  • Publication number: 20200216121
    Abstract: A dynamic interface between a vehicle windshield and a structure (e.g., an A-pillar) is provided. The dynamic interface can be actively managed to allow its configuration to be selectively changed based on real-time driving environment conditions. The interface can include one or more actuators that can be selectively activated or deactivated to change the aerodynamic characteristics of the interface. When a crosswind activation condition is detected, the actuator(s) can be activated. The actuator(s) can be soft-bodied structures. The actuator(s) can include a bladder defining a fluid chamber filled with a dielectric fluid. A first conductor and a second conductor can be operatively positioned on opposite portions of the bladder. When electrical energy is supplied to the conductors, they can become oppositely charged. As a result, the conductors can be electrostatically attracted toward each other, displacing some of the dielectric fluid to an outer peripheral region of the fluid chamber.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 9, 2020
    Inventors: Umesh N. Gandhi, Danil V. Prokhorov, Michael Paul Rowe, Ryohei Tsuruta
  • Publication number: 20200197573
    Abstract: Orthopedic replacements include are formed at least partially of composite materials including a metal matrix with reinforcing carbon fiber integrated into the matrix. The composite materials have substantially lower density than metal, and are expected to have appreciable strength. The orthopedic replacements can include a bone attachment portion and a load bearing portion. In some versions, the orthopedic replacements can include a core formed of the composite material, with a shape completion portion, formed for example from plastic, at least partially coating the core.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventor: Michael Paul Rowe