Patents by Inventor Michael Paul Rowe

Michael Paul Rowe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10316722
    Abstract: A co-catalyst system for the removal of NOx from an exhaust gas stream has a layered oxide and a spinel of formula Ni0.15Co0.85CoAlO4. The system converts to nitric oxide to nitrogen gas with high product specificity. The layered oxide is configured to convert NOx in the exhaust gas stream to an N2O intermediate, and the spinel is configured to convert the N2O intermediate to N2.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: June 11, 2019
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Torin C. Peck, Michael Jones
  • Patent number: 10125429
    Abstract: Electrodes employing as active material iridium nanoparticles synthesized by a novel route are provided. The nanoparticle synthesis is facile and reproducible, and provides iridium nanoparticles of very small dimension and high purity for a wide range of metals. The electrodes utilizing these nanoparticles have excellent efficiency catalyzing the electrolytic production of oxygen from water.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: November 13, 2018
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Kenneth J. McDonald, Michael Paul Rowe
  • Publication number: 20180283251
    Abstract: A co-catalyst system for the removal of NOx from an exhaust gas stream has a layered oxide and a spinel of formula Ni0.15Co0.85CoAlO4. The system converts to nitric oxide to nitrogen gas with high product specificity. The layered oxide is configured to convert NOx in the exhaust gas stream to an N2O intermediate, and the spinel is configured to convert the N2O intermediate to N2.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: Michael Paul Rowe, Torin C. Peck, Michael Jones
  • Patent number: 10023595
    Abstract: A reagent includes an element, formally in oxidation state zero, in complex with a hydride molecule and an incorporated ligand. The incorporated ligand typically has surface active properties. The reagent, termed a Ligated Anionic Element Reagent Complex, can be useful in synthesis of elemental nanoparticles. A method for synthesizing the aforementioned reagent includes a step of ball-milling a mixture containing an elemental powder, bulk hydride molecule, and bulk ligand. The components of the reagent, once complexed, have altered electronic structure and vibrational modes.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: July 17, 2018
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Manitoba
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Johan Alexander van Lierop
  • Publication number: 20180079884
    Abstract: Composite materials include a steel matrix with structural polymer integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural polymer component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural polymer integrated therein.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventor: Michael Paul Rowe
  • Patent number: 9847470
    Abstract: A thermoelectric material is provided. The material can be a grain boundary modified nanocomposite that has a plurality of bismuth antimony telluride matrix grains and a plurality of zinc oxide nanoparticles within the plurality of bismuth antimony telluride matrix grains. In addition, the material has zinc antimony modified grain boundaries between the plurality of bismuth antimony telluride matrix grains.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 19, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Li Qin Zhou, Minjuan Zhang, Debasish Banerjee
  • Patent number: 9847157
    Abstract: A novel ferromagnetic phase of manganese-bismuth alloy has an NiAs-type unit cell structure, similar to that of Low Temperature Phase manganese-bismuth, but with manganese atoms populating interstitial sites. The novel phase, termed ?-MnBi, possesses maximum magnetic coercivity at unusually high temperature. A method for forming ?-MnBi includes annealing MnBi nanoparticles, for example by hot compaction, at temperature lower than 175° C.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: December 19, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Johan Alexander van Lierop
  • Patent number: 9796023
    Abstract: A method for synthesizing ferromagnetic manganese-bismuth (MnBi) nanoparticles, and the MnBi nanoparticles so synthesized, are provided. The method makes use of a novel reagent termed a manganese-based Anionic Element Reagent Complex (Mn-LAERC). A process for forming a bulk MnBi magnet from the synthesized MnBi nanoparticles is also provided. The process involves simultaneous application of elevated temperature and pressure to the nanoparticles.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: October 24, 2017
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Manitoba
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Yaroslav Stephan Wrocyznskyj, Johan Alexander van Lierop
  • Patent number: 9800095
    Abstract: Core shell nanoparticles of an iron-cobalt alloy core, a silicon dioxide shell and a metal silicate interface between the core and the shell are provided. The magnetic properties of the nanoparticles are tunable by control of the interface thickness. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: October 24, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Ryan Daniel Desautels
  • Publication number: 20170266730
    Abstract: A method for synthesizing a reagent complex includes a step of ball-milling a mixture that includes: a powder of a zero-valent element; a hydride molecule; and a nitrile ligand. The method produces a reagent complex having a formula Q0.Xy.Lz, where Q0 is the zero-valent element, X is the hydride molecule, and L is the nitrile ligand. A process for synthesizing nanoparticles composed of the zero-valent element includes a step of adding solvent to the reagent complex. Crystal texture of the nanoparticles is modulated by appropriate selection of the molar ratio nitrile ligand in the reagent complex.
    Type: Application
    Filed: March 21, 2016
    Publication date: September 21, 2017
    Inventors: Elizabeth Marie Skoropata, Michael Paul Rowe, Johan Alexander van Lierop
  • Patent number: 9761904
    Abstract: Electrodes employing as active material metal nanoparticles synthesized by a novel route are provided. The nanoparticle synthesis is facile and reproducible, and provides metal nanoparticles of very small dimension and high purity for a wide range of metals. The electrodes utilizing these nanoparticles thus may have superior capability. Electrochemical cells employing said electrodes are also provided.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: September 12, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Nikhilendra Singh, Michael Paul Rowe
  • Patent number: 9738536
    Abstract: An allotrope-specific reagent includes a hydride molecule in complex with a specified elemental allotrope. The elemental allotrope included in the complex substantially retains a specified allotropic structure of the bulk element. For example, the reagent can contain a specified allotrope of carbon, such as amorphous carbon, diamond, or graphite. The allotrope-specific reagent can be useful for the synthesis of allotropic nanoparticles. A method for synthesizing the allotrope-specific reagent includes a step of ball-milling a mixture that includes a bulk hydride molecule, such as lithium borohydride powder, and a powder of a specified elemental allotrope.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: August 22, 2017
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Univeristy of Manitoba
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Johan Alexander van Lierop
  • Patent number: 9718043
    Abstract: A process for forming thermoelectric nanoparticles includes the steps of a) forming a core material micro-emulsion, b) adding at least one shell material to the core material micro-emulsion forming composite thermoelectric nanoparticles having a core and shell structure.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: August 1, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Minjuan Zhang
  • Patent number: 9650248
    Abstract: Reagent complexes have two or more elements, formally in oxidation state zero, complexed with a hydride molecule. Complexation with the hydride molecule may be evidenced by shifts to lower binding energies, of one or more electrons in each of the two or more elements, as observed by x-ray photoelectron spectroscopy. The reagents can be useful for the synthesis of multi-element nanoparticles. Preparation of the reagents can be achieved by ball-milling a mixture that includes powders of two or more elements and a hydride molecule.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 16, 2017
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Manitoba
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Johan Alexander van Lierop
  • Patent number: 9607740
    Abstract: Core-shell-core nanoparticles of an iron-cobalt alloy core, a silica shell and a manganese bismuth alloy core or nanoparticle on the surface of the silica shell (FeCo/SiO2/MnBi) are provided. The core-shell-core nanoparticles are alternative materials to rare-earth permanent magnets because of the hard magnetic manganese bismuth in nanometer proximity to the soft magnetic iron cobalt.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: March 28, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Michael Paul Rowe, Ryan Daniel Desautels
  • Patent number: 9546192
    Abstract: A novel ligated reagent complex is provided. The ligated reagent includes at least one zero-valent atom, whether metal, metalloid, or non-metal, in complex with at least one hydride molecule and at least one nitrile compound. The ligated reagent complex can be useful in the synthesis of nanoparticles. Also provided is a method for preparing a ligated reagent complex. The method includes a step of ball-milling a mixture that includes a preparation containing a zero-valent element, a hydride molecule, and a nitrile compound.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: January 17, 2017
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Manitoba
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Yaroslav Stephan Wrocyznskyj, Johan Alexander van Lierop
  • Publication number: 20160298246
    Abstract: Electrodes employing as active material iridium nanoparticles synthesized by a novel route are provided. The nanoparticle synthesis is facile and reproducible, and provides iridium nanoparticles of very small dimension and high purity for a wide range of metals. The electrodes utilizing these nanoparticles have excellent efficiency catalyzing the electrolytic production of oxygen from water.
    Type: Application
    Filed: June 23, 2016
    Publication date: October 13, 2016
    Inventors: Kenneth J. McDonald, Michael Paul Rowe
  • Publication number: 20160280720
    Abstract: A reagent includes an element, formally in oxidation state zero, in complex with a hydride molecule and an incorporated ligand. The incorporated ligand typically has surface active properties. The reagent, termed a Ligated Anionic Element Reagent Complex, can be useful in synthesis of elemental nanoparticles. A method for synthesizing the aforementioned reagent includes a step of ball-milling a mixture containing an elemental powder, bulk hydride molecule, and bulk ligand. The components of the reagent, once complexed, have altered electronic structure and vibrational modes.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Johan Alexander van Lierop
  • Publication number: 20160280542
    Abstract: Reagent complexes have two or more elements, formally in oxidation state zero, complexed with a hydride molecule. Complexation with the hydride molecule may be evidenced by shifts to lower binding energies, of one or more electrons in each of the two or more elements, as observed by x-ray photoelectron spectroscopy. The reagents can be useful for the synthesis of multi-element nanoparticles. Preparation of the reagents can be achieved by ball-milling a mixture that includes powders of two or more elements and a hydride molecule.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Johan Alexander van Lierop
  • Publication number: 20160280558
    Abstract: An allotrope-specific reagent includes a hydride molecule in complex with a specified elemental allotrope. The elemental allotrope included in the complex substantially retains a specified allotropic structure of the bulk element. For example, the reagent can contain a specified allotrope of carbon, such as amorphous carbon, diamond, or graphite. The allotrope-specific reagent can be useful for the synthesis of allotropic nanoparticles. A method for synthesizing the allotrope-specific reagent includes a step of ball-milling a mixture that includes a bulk hydride molecule, such as lithium borohydride powder, and a powder of a specified elemental allotrope.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Johan Alexander van Lierop