Patents by Inventor Michael RIZZOLO

Michael RIZZOLO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230172081
    Abstract: A semiconductor structure comprises an active device stack comprising one or more layers, the one or more layers comprising a top electrode. The semiconductor structure also comprises an additional layer disposed over the active device stack, an encapsulation layer surrounding the active device stack and the additional layer, and a contact to the top electrode coupled to the additional layer.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 1, 2023
    Inventors: Michael Rizzolo, Takashi Ando, Lawrence A. Clevenger, Kevin W. Brew
  • Patent number: 11665974
    Abstract: An embodiment of the invention may include a magnetic random-access memory (MRAM) structure and method of making the structure. The MRAM structure may include a magnetic tunnel junction stack. The MRAM structure may include a magnetic liner located between the magnetic tunnel junction stack and a top contact, where the magnetic liner may be a ferromagnetic material. This may enable the magnetic liner to act as an independent variable to balance many of the magnetic parameters in the MTJ film stack in order to achieve zero magnetic field at the MTJ layer.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: May 30, 2023
    Assignee: International Business Machines Corporation
    Inventors: Michael Rizzolo, Saba Zare, Virat Vasav Mehta, Eric Raymond Evarts
  • Publication number: 20230146034
    Abstract: An approach providing a semiconductor structure that provides a self-leveling, flowable, dielectric material for a gap fill material between vertical structures in many emerging non-volatile memory devices that are being formed with vertical structures for increasing memory device density. The semiconductor structure provides a flat dielectric surface between a plurality of contacts in a back end of the line metal layer in both the memory region and in the logic region of the semiconductor structure. The semiconductor structure includes a first portion of the plurality of contacts that each connect to a pillar-based memory device in an array of pillar-based memory devices. The first portion of the contacts that each connect to a pillar-based memory device in the array of memory devices reside in a conventional interlayer dielectric material under the self-leveling dielectric material. The flowable, self-leveling material provides a flat dielectric surface during contact formation.
    Type: Application
    Filed: November 11, 2021
    Publication date: May 11, 2023
    Inventors: Michael Rizzolo, Devika Sarkar Grant, SON NGUYEN
  • Patent number: 11636353
    Abstract: The present invention provides for a cognitive system using an autonomous vehicle includes a plurality of sensors configured to obtain the weather forecast for a pollution detectable area; a cognitive input to determine the pollution detectable area having highest sensitivity of pollution; a light detecting and ranging system configured to spatially probe pollution levels distributed in the pollution detectable area; an evaluation system to evaluate the probed pollution levels in the pollution detectable area; and a recommendation system for recommending an action to be taken based on evaluation system results of the probed pollution levels in the pollution detectable area, wherein the pollution levels are detected based light emitted by the light detecting and ranging system.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: April 25, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Michael Rizzolo
  • Publication number: 20230086181
    Abstract: A cross-point SOT-MRAM cell includes: a first SHE write line; a second SHE write line non-colinear to the first SHE write line; a cross-point free layer comprising a first free layer, a second free layer, and a dielectric layer disposed between the first and the second free layers, the cross-point free layer configured to store a magnetic bit and located between and in contact with both the first SHE write line and the second SHE write line; and a remote sensing MTJ located in a vicinity of the cross-point free layer, wherein a free layer sensor of the remote sensing MTJ is in contact with one of the first SHE write line and the second SHE write line.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Julien Frougier, Dimitri Houssameddine, Ruilong Xie, Kangguo Cheng, Michael Rizzolo
  • Patent number: 11610941
    Abstract: A non-volatile memory cell includes a thin film resistor (TFR) in series and between a top state influencing electrode and a top wire. The TFR limits or generally reduces the electrical current at the top state influencing electrode from the top wire. As such, non-volatile memory cell endurance may be improved and adverse impacts to component(s) that neighbor the non-volatile memory cell may be limited. The TFR is additionally utilized as an etch stop when forming a top wire trench associated with the fabrication of the top wire. In some non-volatile memory cells where cell symmetry is desired, an additional TFR may be formed between a bottom wire and a bottom state influencing electrode.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: March 21, 2023
    Assignee: International Business Machines Corporation
    Inventors: Kevin W. Brew, Takashi Ando, Michael Rizzolo, Lawrence A. Clevenger
  • Patent number: 11574864
    Abstract: A semiconductor device includes a porous dielectric layer including a recessed portion, a conductive layer formed in the recessed portion, and a cap layer formed on the porous dielectric layer and on the conductive layer in the recessed portion, an upper surface of the porous dielectric layer being exposed through a gap in the cap layer.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: February 7, 2023
    Assignee: Tessera LLC
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Bartlet H. Deprospo, Huai Huang, Christopher J. Penny, Michael Rizzolo
  • Patent number: 11569442
    Abstract: A method of manufacturing a magnetic random access memory device includes depositing a liner on an intermediate device including an opening in a sacrificial dielectric layer, depositing a conductive metal over the liner and in the opening, removing a portion of the conductive metal while preserving the liner and a thickness of the sacrificial dielectric layer, removing a first portion of the liner by etching, wherein the liner is recessed into the opening, depositing a plurality of metallic tunnel junction layers, forming a hardmask on the plurality of metallic tunnel junction layers, and patterning the metallic tunnel junction layers to form a metallic tunnel junction stack and simultaneously clear a second portion of the liner and a portion the sacrificial dielectric layer.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: January 31, 2023
    Assignee: International Business Machines Corporation
    Inventors: Saba Zare, Michael Rizzolo, Mona A. Ebrish, Theodorus E. Standaert
  • Patent number: 11552243
    Abstract: A memory device is provided that includes at least one MTJ pillar which can have a ternary program state as compared to a binary program state in a conventional device. The MTJ pillar contains a lower MTJ structure that includes at least a first magnetic reference material, a first tunnel barrier and a first magnetic free layer material, and an upper MTJ structure that includes at least a second magnetic reference material, a second tunnel barrier and a second magnetic free layer material; the upper MTJ structure is stacked atop the lower MTJ structure. The first and second magnetic free layer materials have different designs and/or compositions resulting in different switching voltages.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: January 10, 2023
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Michael Rizzolo, Ravi Nair
  • Publication number: 20230006131
    Abstract: Aspects of the invention are directed to a method of forming an integrated circuit. Both a dielectric layer and a bottom contact are formed with the bottom contact disposed at least partially in the dielectric layer. The bottom contact is subsequently recessed into the dielectric layer to cause the dielectric layer to define two sidewalls bordering regions of the bottom contact removed during recessing. Two sidewall spacers are then formed along the two sidewalls. A landing pad is formed on the recessed bottom contact and between the two sidewall spacers. Lastly, an additional feature is formed on top of the landing pad at least in part by anisotropic etching. In one or more embodiments, the additional feature includes a magnetic tunnel junction patterned at least in part by ion beam etching.
    Type: Application
    Filed: September 13, 2022
    Publication date: January 5, 2023
    Inventors: Kisup Chung, Michael Rizzolo, Fee Li Lie
  • Publication number: 20220383921
    Abstract: Provided is a magnetoresistive random-access memory (MRAM) cell. The MRAM cell comprises a top contact, a hard mask layer below the top contact, and a magnetic tunnel junction (MTJ) below the hard mask layer. The MRAM cell further comprises a diffusion barrier below the MTJ, a bottom contact below the diffusion barrier, and a magnetic liner arranged around the bottom contact.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Inventors: Michael Rizzolo, Saba Zare, Virat Vasav Mehta, Eric Raymond Evarts
  • Patent number: 11502242
    Abstract: A semiconductor device includes a base structure of an embedded memory device including a bottom electrode contact (BEC) landing pad within a memory area of the embedded memory device and a first metallization level having at least a first conductive line within a logic area of the embedded memory device, a cap layer disposed on the base structure, a BEC disposed through the cap layer on the BEC landing pad, a memory pillar disposed on the BEC and the cap layer, encapsulation layers encapsulating the memory pillar to protect the memory stack, and a second metallization level including a second conductive line surrounding the top electrode, a via disposed on the first conductive line such that the second via is below the top electrode, and a third conductive line disposed on the via to enable the memory pillar to be fitted between the first and second metallization levels.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: November 15, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ashim Dutta, Chih-Chao Yang, Michael Rizzolo, Theodorus E. Standaert
  • Patent number: 11488863
    Abstract: A method for manufacturing a semiconductor device includes forming a plurality of memory elements on a first interconnect level, and forming an etch stop layer on the plurality of memory elements. A dielectric layer is formed on the etch stop layer, and a portion of the dielectric over the plurality of memory elements is removed to expose a portion of the etch stop layer. The method further includes removing the exposed portion of the etch stop layer. The removing of the portion of the dielectric layer and of the exposed portion of the etch stop layer forms a trench. A metallization layer is formed in the trench on the plurality of memory elements, wherein the metallization layer is part of a second interconnect level.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: November 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Nicholas Anthony Lanzillo, Michael Rizzolo
  • Patent number: 11476415
    Abstract: Aspects of the invention are directed to a method of forming an integrated circuit. Both a dielectric layer and a bottom contact are formed with the bottom contact disposed at least partially in the dielectric layer. The bottom contact is subsequently recessed into the dielectric layer to cause the dielectric layer to define two sidewalls bordering regions of the bottom contact removed during recessing. Two sidewall spacers are then formed along the two sidewalls. A landing pad is formed on the recessed bottom contact and between the two sidewall spacers. Lastly, an additional feature is formed on top of the landing pad at least in part by anisotropic etching. In one or more embodiments, the additional feature includes a magnetic tunnel junction patterned at least in part by ion beam etching.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: October 18, 2022
    Assignee: International Business Machines Corporation
    Inventors: Kisup Chung, Michael Rizzolo, Fee Li Lie
  • Patent number: 11444029
    Abstract: A semiconductor structure includes an interlayer dielectric layer, a first set of back-end-of-line interconnect structures disposed in the interlayer dielectric layer, and a second set of back-end-of-line interconnect structures at least partially disposed in the interlayer dielectric layer. Each of the first set of back-end-of-line interconnect structures has a first width and a first height providing a first aspect ratio. Each of the second set of back-end-of-line interconnect structures has a second width and a second height providing a second aspect ratio different than the first aspect ratio. The second width is greater than the first width, and the second height is different than the first height.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: September 13, 2022
    Assignee: International Business Machines Corporation
    Inventors: Prasad Bhosale, Nicholas Anthony Lanzillo, Michael Rizzolo, Chih-Chao Yang
  • Patent number: 11424403
    Abstract: A method of fabricating an MRAM device, the method including forming a magnetoresistive random-access memory (MRAM) stack comprising a first hard mask, forming sidewall spacers adjacent to the MRAM stack, forming a layer of interconnect metal around and above the MRAM stack, recessing the interconnect metal, forming a layer of a second hard mask over the interconnect metal, and patterning and etching the second hard mask and interconnect metal, forming interconnect metal lines.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: August 23, 2022
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Bruce B. Doris, Michael Rizzolo, Alexander Reznicek
  • Publication number: 20220238794
    Abstract: An embodiment of the invention may include a magnetic random-access memory (MRAM) structure and method of making the structure. The MRAM structure may include a magnetic tunnel junction stack. The MRAM structure may include a magnetic liner located between the magnetic tunnel junction stack and a top contact, where the magnetic liner may be a ferromagnetic material. This may enable the magnetic liner to act as an independent variable to balance many of the magnetic parameters in the MTJ film stack in order to achieve zero magnetic field at the MTJ layer.
    Type: Application
    Filed: January 27, 2021
    Publication date: July 28, 2022
    Inventors: Michael Rizzolo, Saba Zare, Virat Vasav Mehta, Eric Raymond Evarts
  • Publication number: 20220180911
    Abstract: An apparatus comprising a magnetic tunnel junction (MTJ), a diffusion barrier, wherein the MTJ is located on the diffusion barrier and a bottom contact that includes a magnetic field generating component, wherein the diffusion barrier is located on top of the bottom contact, wherein the magnetic field generated by the magnetic field generating component affects the stability of the MTJ.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Saba Zare, Michael Rizzolo, Virat Vasav Mehta, Eric Raymond Evarts, Theodorus E. Standaert
  • Patent number: 11351811
    Abstract: An article is authenticated by providing a magnetic security mark in the form of an optically-passive randomly-generated nanoscale magnetic pattern. The pattern is pre-imaged and this reference image is uploaded to a secure database along with an identifier for the article such as a serial number. A user of the article verifies its authenticity by scanning it magnetically to obtain a scanned image of the magnetic pattern. The serial number is used to retrieve the previously uploaded reference image which is compared to the scanned image. If the images match, the article's authenticity is confirmed. A single article may have multiple magnetic security marks, each unique, placed at predetermined, non-uniform locations. The magnetic patterns are generated using thin film deposition of yttrium iron garnet. In one embodiment the article is a physical key having additional security features, such as mechanical features and a radio-frequency identification chip.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: June 7, 2022
    Assignee: International Business Machines Corporation
    Inventors: Michael Rizzolo, Marc A. Bergendahl, Christopher J. Waskiewicz, Christopher J. Penny
  • Patent number: 11348872
    Abstract: A semiconductor device is provided and includes first and second dielectrics, first and second conductive elements, a self-formed-barrier (SFB) and a liner. The first and second dielectrics are disposed with one of first-over-second dielectric layering and second-over-first dielectric layering. The first and second conductive elements are respectively suspended at least partially within a lower one of the first and second dielectrics and at least partially within the other one of the first and second dielectrics. The self-formed-barrier (SFB) is formed about a portion of one of the first and second conductive elements which is suspended in the second dielectric. The liner is deposited about a portion of the other one of the first and second conductive elements which is partially suspended in the first dielectric.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: May 31, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Takeshi Nogami, Christopher J. Penny, Michael Rizzolo