Patents by Inventor Michael S. Barnes

Michael S. Barnes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090047417
    Abstract: Lubricant coatings are applied as vapor to magnetic disks. The method and apparatus include applying vaporizing heat to a pre-determined amount of liquid to form a vapor. Precision delivery of lubricant vapor allows close-loop lube thickness control. The flow of the liquid to the heater is controlled such that only a pre-determined amount from the reservoir flows to the heater at a time, the pre-determined amount is vaporized. According to an aspect, the pre-determined amount of liquid is transferred from the reservoir for the application of vaporizing heat; isolating the reservoir from the vacuum of the vacuum chamber. The method enables multiple types of lubricants to be applied to the disk. Another heater is included for applying vaporizing heat to a second liquid to form a second vapor to supply to the disk. According to an aspect, pulsed lubricant vapor delivery is provided, conserving lubricant and minimizing thermal decomposition.
    Type: Application
    Filed: March 31, 2008
    Publication date: February 19, 2009
    Inventors: Michael S. Barnes, Charles Liu, Ren Xu
  • Publication number: 20080202924
    Abstract: An arrangement for concurrently powering a plurality of sputtering sources. A power supply is coupled to a charge accumulator. The charge accumulator is coupled to several sputtering sources via switching devices. The duty cycle of each switching device is used to individually control the power delivered to each sputtering source. In another arrangement, a power source is coupled to an impedance match circuit. The impedance match circuit is coupled to several sputtering sources via several balance elements. Each balance element is operated to individually control the power delivered to the sputtering source.
    Type: Application
    Filed: February 15, 2008
    Publication date: August 28, 2008
    Inventors: Terry Bluck, Patrick R. Ward, Michael S. Barnes
  • Publication number: 20080066678
    Abstract: There is described apparatus and methods for transporting and processing substrates including wafers as to efficiently produce at reasonable costs improved throughput as compared to systems in use today. A key element is the use of a transport chamber along the sides of processing chambers for feeding substrates into a controlled atmosphere through a load lock and then along a transport chamber as a way of reaching processing chambers and then out of the controlled atmosphere following processing in the processing chambers.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 20, 2008
    Inventors: Terry Bluck, Kevin P. Fairbairn, Michael S. Barnes, Christopher T. Lane
  • Patent number: 7311290
    Abstract: A kit of components for constructing and installing an awning and light support system to provide sun and weather protection to a window or door of a structure. Included therein are a pair of uniquely constructed bracket members having an L-shaped configuration with the respective free ends of the legs termination in an angled L-shape configuration, where the latter are used to removably secure an awning spar to support the awning material. Additionally, the bracket member includes a short horizontal arm, projecting from a first leg of the bracket member within the plane of the bracket member, from which may be secured a lighting fixture.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: December 25, 2007
    Inventor: Michael S. Barnes
  • Patent number: 7105442
    Abstract: A method is described for decreasing the critical dimensions of integrated circuit features in which a first masking layer (101) is deposited, patterned and opened in the manner of typical feature etching, and a second masking layer (201) is deposited thereon prior to etching the underlying insulator. The second masking layer is advantageously coated in a substantially conformal manner. Opening the second masking layer while leaving material of the second layer on the sidewalls of the first masking layer as spacers leads to reduction of the feature critical dimension in the underlying insulator. Ashable masking materials, including amorphous carbon and organic materials are removable without CMP, thereby reducing costs. Favorable results are also obtained utilizing more than one masking layer (101, 301) underlying the topmost masking layer (302) from which the spacers are formed. Embodiments are also described in which slope etching replaces the addition of a separate spacer layer.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: September 12, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Hongching Shan, Kenny L. Doan, Jingbao Liu, Michael S. Barnes, Hong D. Nguyen, Christopher Dennis Bencher, Christopher S. Ngai, Wendy H. Yeh, Eda Tuncel, Claes H. Bjorkman
  • Patent number: 6962644
    Abstract: A method and apparatus for processing wafers including a chamber defining a plurality of isolated processing regions. The isolated processing regions have an upper end and a lower end. The chamber further includes a plurality of plasma generation devices each disposed adjacent the upper end of each isolated processing region, and one of a plurality of power supplies connected to each plasma generation device. The output frequency of the plurality of power supplies are phase and/or frequency locked together. Additionally, the chamber includes a plurality of gas distribution assemblies. Each gas distribution assembly is disposed within each isolated processing region. A movable wafer support is disposed within each isolated processing region to support a wafer for plasma processing thereon. The movable wafer support includes a bias electrode coupled to a bias power supply configured to control the bombardment of plasma ions toward the movable wafer support.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: November 8, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Paterson, Valentin N. Todorov, Jon McChesney, Gerhard M. Schneider, David Palagashvili, John P. Holland, Michael S. Barnes
  • Patent number: 6939434
    Abstract: A plasma reactor is described that includes a vacuum chamber defined by an enclosure including a side wall and a workpiece support pedestal within the chamber defining a processing region overlying said pedestal. The chamber has at least a first pair of ports near opposing sides of said processing region and a first external reentrant tube is connected at respective ends thereof to the pair of ports. The reactor further includes a process gas injection apparatus (such as a gas distribution plate) and an RF power applicator coupled to the reentrant tube for applying plasma source power to process gases within the tube to produce a reentrant torroidal plasma current through the first tube and across said processing region. A magnet controls radial distribution of plasma ion density in the processing region, the magnet having an elongate pole piece defining a pole piece axis intersecting the processing region.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: September 6, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Yan Ye, Kartik Ramaswamy, Andrew Nguyen, Michael S. Barnes, Huong Thanh Nguyen
  • Patent number: 6849151
    Abstract: A substrate is placed in a process zone and an energized process gas is maintained in the process zone to process the substrate. A light beam is reflectively diffracted from a pattern of features of the substrate being processed, the reflected beam is monitored, and a signal is generated in relation to the monitored beam. During processing, a width of the features of the substrate can change. The generated signal is evaluated to detect the occurrence of a change in the width of the features.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: February 1, 2005
    Inventors: Michael S. Barnes, John P. Holland, David S. L. Mui, Wei Liu
  • Publication number: 20040149223
    Abstract: A plasma processing module for processing a substrate includes a plasma containment chamber having a feed gas inlet port capable of allowing a feed gas to enter the plasma containment chamber of the plasma processing module during the processing of the substrate. An inductively coupled source is used to energize the feed gas and striking a plasma within the plasma containment chamber. The specific configuration of the inductively coupled source causes the plasma to be formed such that the plasma includes a primary dissociation zone within the plasma containment chamber. A secondary chamber is separated from the plasma containment chamber by a plasma containment plate. The secondary chamber includes a chuck and an exhaust port. The chuck is configured to support the substrate during the processing of the substrate and the exhaust port is connected to the secondary chamber such that the exhaust port allows gases to be removed from the secondary chamber during the processing of the substrate.
    Type: Application
    Filed: December 18, 2003
    Publication date: August 5, 2004
    Applicant: Lam Research Corporation
    Inventors: Wenli Z. Collison, Michael S. Barnes, Tuqiang Q. Ni, Butch Berney, Wayne W. Vereb, Brian K. McMillin
  • Patent number: 6732541
    Abstract: A capacity control system for a variable capacity refrigerant compressor includes an internal bleed passage coupling a crankcase chamber of the compressor to a suction port, an electrically-operated two-port control valve that selectively opens and closes a passage between the crankcase chamber and a discharge chamber, and pressure sensors for measuring the compressor discharge pressure and suction pressure. A plunger of the control valve is disposed within the passage coupling the crankcase chamber and the discharge chamber, and a solenoid armature linearly positions the plunger within the passage to open and close the passage. The plunger has an axial bore that forms a continuous passage between the discharge chamber and a cavity in which the discharge pressure sensor is retained so that the sensor is continuously exposed to the discharge pressure regardless of the plunger position.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: May 11, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Thomas Martin Urbank, Karma Vir Sangwan, Andrew J. Jackson, Michael S. Barnes, Ernesto Jose Gutierrez
  • Patent number: 6706138
    Abstract: Apparatus and method for processing a substrate are provided. The apparatus for processing a substrate comprises: a chamber having a first electrode; a substrate support disposed in the chamber and providing a second electrode; a high frequency power source electrically connected to either the first or the second electrode; a low frequency power source electrically connected to either the first or the second electrode; and a variable impedance element connected to one or more of the electrodes. The variable impedance element may be tuned to control a self bias voltage division between the first electrode and the second electrode. Embodiments of the invention substantially reduce erosion of the electrodes, maintain process uniformity, improve precision of the etch process for forming high aspect ratio sub-quarter-micron interconnect features, and provide an increased etch rate which reduces time and costs of production of integrated circuits.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: March 16, 2004
    Assignee: Applied Materials Inc.
    Inventors: Michael S. Barnes, John Holland, Alexander Paterson, Valentin Todorov, Farhad Moghadam
  • Patent number: 6692649
    Abstract: A plasma processing module for processing a substrate includes a plasma containment chamber having a feed gas inlet port capable of allowing a feed gas to enter the plasma containment chamber of the plasma processing module during the processing of the substrate. An inductively coupled source is used to energize the feed gas and striking a plasma within the plasma containment chamber. The specific configuration of the inductively coupled source causes the plasma to be formed such that the plasma includes a primary dissociation zone within the plasma containment chamber. A secondary chamber is separated from the plasma containment chamber by a plasma containment plate. The secondary chamber includes a chuck and an exhaust port. The chuck is configured to support the substrate during the processing of the substrate and the exhaust port is connected to the secondary chamber such that the exhaust port allows gases to be removed from the secondary chamber during the processing of the substrate.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: February 17, 2004
    Assignee: Lam Research Corporation
    Inventors: Wenli Z. Collison, Michael S. Barnes, Tuqiang O. Ni, Butch Berney, Wayne W. Vereb, Brian K. McMillin
  • Publication number: 20040026368
    Abstract: A substrate is placed in a process zone and an energized process gas is maintained in the process zone to process the substrate. A light beam is reflectively diffracted from a pattern of features of the substrate being processed, the reflected beam is monitored, and a signal is generated in relation to the monitored beam. During processing, a width of the features of the substrate can change. The generated signal is evaluated to detect the occurrence of a change in the width of the features.
    Type: Application
    Filed: August 7, 2002
    Publication date: February 12, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Michael S. Barnes, John P. Holland, David S.L. Mui, Wei Liu
  • Publication number: 20030226641
    Abstract: A plasma reactor is described that includes a vacuum chamber defined by an enclosure including a side wall and a workpiece support pedestal within the chamber defining a processing region overlying said pedestal. The chamber has at least a first pair of ports near opposing sides of said processing region and a first external reentrant tube is connected at respective ends thereof to the pair of ports. The reactor further includes a process gas injection apparatus (such as a gas distribution plate) and an RF power applicator coupled to the reentrant tube for applying plasma source power to process gases within the tube to produce a reentrant torroidal plasma current through the first tube and across said processing region. A magnet controls radial distribution of plasma ion density in the processing region, the magnet having an elongate pole piece defining a pole piece axis intersecting the processing region.
    Type: Application
    Filed: June 5, 2002
    Publication date: December 11, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Yan Ye, Kartik Ramaswamy, Andrew Nguyen, Michael S. Barnes, Huong Thanh Nguyen
  • Publication number: 20030219988
    Abstract: A method is described for decreasing the critical dimensions of integrated circuit features in which a first masking layer (101) is deposited, patterned and opened in the manner of typical feature etching, and a second masking layer (201) is deposited thereon prior to etching the underlying insulator. The second masking layer is advantageously coated in a substantially conformal manner. Opening the second masking layer while leaving material of the second layer on the sidewalls of the first masking layer as spacers leads to reduction of the feature critical dimension in the underlying insulator. Ashable masking materials, including amorphous carbon and organic materials are removable without CMP, thereby reducing costs. Favorable results are also obtained utilizing more than one masking layer (101, 301) underlying the topmost masking layer (302) from which the spacers are formed. Embodiments are also described in which slope etching replaces the addition of a separate spacer layer.
    Type: Application
    Filed: May 22, 2002
    Publication date: November 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Hongqing Shan, Kenny L. Doan, Jingbao Liu, Michael S. Barnes, Huong Thanh Nguyen, Christopher Dennis Bencher, Christopher S. Ngai, Wendy H. Yeh, Eda Tuncel, Claes H. Bjorkman
  • Publication number: 20030176074
    Abstract: A method and apparatus for processing wafers including a chamber defining a plurality of isolated processing regions. The isolated processing regions have an upper end and a lower end. The chamber further includes a plurality of plasma generation devices each disposed adjacent the upper end of each isolated processing region, and one of a plurality of power supplies connected to each plasma generation device. The output frequency of the plurality of power supplies are phase and/or frequency locked together. Additionally, the chamber includes a plurality of gas distribution assemblies. Each gas distribution assembly is disposed within each isolated processing region. A movable wafer support is disposed within each isolated processing region to support a wafer for plasma processing thereon. The movable wafer support includes a bias electrode coupled to a bias power supply configured to control the bombardment of plasma ions toward the movable wafer support.
    Type: Application
    Filed: September 10, 2002
    Publication date: September 18, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Alexander Paterson, Valentin N. Todorov, Jon McChesney, Gerhard M. Schneider, David Palagashvili, John P. Holland, Michael S. Barnes
  • Publication number: 20030037881
    Abstract: Apparatus and method for processing a substrate are provided. The apparatus for processing a substrate comprises: a chamber having a first electrode; a substrate support disposed in the chamber and providing a second electrode; a high frequency power source electrically connected to either the first or the second electrode; a low frequency power source electrically connected to either the first or the second electrode; and a variable impedance element connected to one or more of the electrodes. The variable impedance element may be tuned to control a self bias voltage division between the first electrode and the second electrode. Embodiments of the invention substantially reduce erosion of the electrodes, maintain process uniformity, improve precision of the etch process for forming high aspect ratio sub-quarter-micron interconnect features, and provide an increased etch rate which reduces time and costs of production of integrated circuits.
    Type: Application
    Filed: August 16, 2001
    Publication date: February 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Michael S. Barnes, John Holland, Alexander Paterson, Valentin Todorov, Farhad Moghadam
  • Patent number: 6521082
    Abstract: Within both a magnetically enhanced plasma apparatus and a magnetically enhanced plasma method there is employed: (1) a repetitive and geometrically selective pulsing of a magnetic field from a first level to a second level within a reactor chamber; and (2) a repetitive pulsing of a radio frequency power from a first level to a second level within the reactor chamber when repetitively and geometrically selectively pulsing from the first level to the second level the magnetic field within the reactor chamber. The concurrent repetitive pulsings provide a plasma within the reactor chamber with enhanced plasma uniformity and enhanced ion energy control.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: February 18, 2003
    Assignee: Applied Materials Inc.
    Inventors: Michael S Barnes, Hongqing Shan
  • Publication number: 20030029180
    Abstract: A capacity control system for a variable capacity refrigerant compressor includes an internal bleed passage coupling a crankcase chamber of the compressor to a suction port, an electrically-operated two-port control valve that selectively opens and closes a passage between the crankcase chamber and a discharge chamber, and at least one pressure sensor within the control valve that is continuously coupled to the discharge chamber for measuring the compressor discharge pressure. A plunger of the control valve is disposed within the passage coupling the crankcase chamber and the discharge chamber, and a solenoid armature linearly positions the plunger within the passage to open and close the passage. The plunger has an axial bore that forms a continuous passage between the discharge chamber and a cavity in which the pressure sensor is retained so that the sensor is continuously exposed to the discharge pressure regardless of the plunger position.
    Type: Application
    Filed: October 9, 2002
    Publication date: February 13, 2003
    Inventors: Thomas Martin Urbank, Karma Vir Sangwan, Andrew J. Jackson, Michael S. Barnes, Ernesto Jose Gutierrez
  • Patent number: 6361645
    Abstract: Disclosed is a method and device for compensating a bias voltage on a wafer disposed over an electrostatic chuck in a processing chamber of a plasma processing system. The plasma processing system includes an electrostatic and RF power supplies that are coupled to the electrostatic chuck. The bias compensation device includes a voltage converter, a storage unit, and a voltage adjusting circuitry. The voltage converter is coupled to the electrostatic chuck for detecting a voltage Vpp of the electrostatic chuck. The voltage converter converts the detected voltage to a lower voltage Vref. The storage unit stores a predetermined slope and a predetermined offset of a calibration curve, which is derived by fitting a plurality of wafer bias voltages as a function of electrostatic chuck voltages.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: March 26, 2002
    Assignee: Lam Research Corporation
    Inventors: Alan M. Schoepp, Robert E. Knop, Christopher H. Olson, Michael S. Barnes, Tuan M. Ngo