Patents by Inventor Michael S. Cox

Michael S. Cox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080008842
    Abstract: Methods for reducing plasma instability for plasma depositing a dielectric layer are provided. In one embodiment, the method includes providing a substrate in a plasma processing chamber, flowing a gas mixture into the chamber, applying an RF power to an electrode to form a plasma in the chamber, and collecting DC bias information. In another embodiment, the method for plasma processing includes obtaining of DC bias information over a plurality of plasma generation events, and determining an RF power application parameter from the DC bias information.
    Type: Application
    Filed: July 7, 2006
    Publication date: January 10, 2008
    Inventors: Jyr Hong Soo, Matthew Spuller, Michael S. Cox, Martin Jay Seamons, Amir Al-Bayati, Bok Hoen Kim, Hichem M'Saad
  • Publication number: 20070295602
    Abstract: The invention generally provides a ground shield for use in a physical vapor deposition (PVD) chamber. In one embodiment, a ground shield includes a generally cylindrical body comprising an outer wall, an inner upper wall, an inner lower wall having a diameter less than a diameter of the inner upper wall and a reentrant feature coupling the upper and inner lower walls. The reentrant feature advantageously prevents arching between the shield and target, which promotes greater process uniformity and repeatability along with longer chamber component service life.
    Type: Application
    Filed: June 27, 2006
    Publication date: December 27, 2007
    Inventors: Jennifer W. Tiller, Anantha Subramani, Michael S. Cox, Keith A. Miller
  • Patent number: 7189639
    Abstract: A method is disclosed for depositing a dielectric film on a substrate having a plurality of gaps formed between adjacent raised surfaces disposed in a high density plasma substrate processing chamber substrate. In one embodiment the method comprises flowing a process gas comprising a germanium source, a silicon source and an oxidizing agent into the substrate processing chamber; forming a high density plasma that has simultaneous deposition and sputtering components from the process gas to deposit a dielectric film comprising silicon, germanium and oxygen; and during the step of forming a high density plasma, maintaining a pressure within the substrate processing chamber of less than 100 mTorr while allowing the dielectric film to be heated above its glass transition temperature.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: March 13, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Michael S. Cox, Bruno Geoffrion, Srinivas D. Nemani
  • Patent number: 7097886
    Abstract: A method of depositing an insulating film over a substrate having a gap formed between two adjacent raised features. The method includes depositing one portion of the insulating film over the substrate and in the gap using a high density plasma process that has simultaneous deposition and sputtering components and depositing another portion of the insulating film over the substrate and in the gap using an atomic layer deposition process. In some embodiments the portion of the film deposited by an atomic layer deposition process is deposited over the portion of the film deposited using a high density plasma CVD technique. In other embodiments, the portion of the film deposited by a high density plasma CVD process is deposited over the portion of the film deposited using an atomic layer deposition process.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: August 29, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Farhad K. Moghadam, Michael S. Cox, Padmanabhan Krishnaraj, Thanh N. Pham, Zhenjiang Cui
  • Patent number: 6992024
    Abstract: A method of filling a plurality of trenches etched in a substrate. In one embodiment the method includes depositing a layer of spin-on glass material over the substrate and into the plurality of trenches; exposing the layer of spin-on glass material to a solvent; curing the layer of spin-on glass material; and depositing a layer of silica glass over the cured spin-on glass layer using a chemical vapor deposition technique.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: January 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Rick J. Roberts, Michael S. Cox, Jun Zhao
  • Patent number: 6894474
    Abstract: A probe for measuring plasma properties in a processing chamber, comprises a conductive rod having a front portion and a rear portion. The front portion of the conductive rod comprises a probe surface adapted to be coplanar with an interior wall of the chamber. The probe also includes an insulating sheath circumscribing the conductive rod.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: May 17, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Michael S. Cox, Canfeng Lai, Qiwei Liang
  • Patent number: 6890597
    Abstract: A combination of deposition and polishing steps are used to permit improved uniformity of a film after the combination of steps. Both the deposition and polishing are performed with processes that vary across the substrate. The combination of the varying deposition and etching rates results in a film that is substantially planar after the film has been polished. In some instances, it may be easier to control the variation of one of the two processes than the other so that the more controllable process is tailored to accommodate nonuniformities introduced by the less controllable process.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: May 10, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Bruno Geoffrion, Michael S. Cox, Lin Zhang, Bikram Kapoor, Anchuan Wang, Zhenjiang Cui
  • Patent number: 6878644
    Abstract: A method of filling a plurality of trenches etched in a substrate. In one embodiment the method includes depositing a layer of spin-on glass material over the substrate and into the plurality of trenches; curing the layer of spin-on glass material by exposing the spin-on glass material to electron beam radiation at a first temperature for a first period and subsequently exposing the spin-on glass material to an electron beam at a second temperature for a second period, where the second temperature is greater than the first temperature. The method concludes by depositing a layer of silica glass over the cured spin-on glass layer using a chemical vapor deposition technique.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: April 12, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Rick J. Roberts, Michael S. Cox, Jun Zhao, Khaled Elsheref, Alexandros T. Demos
  • Patent number: 6841006
    Abstract: A substrate processing apparatus is disclosed. In one embodiment, the apparatus includes a first atmospheric deposition station and a second atmospheric deposition station. The second atmospheric deposition station comprises an atmospheric pressure vapor deposition chamber. A substrate handling system is adapted to transfer substrates between the first and the second atmospheric deposition stations.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: January 11, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Michael Barnes, Michael S. Cox, Canfeng Lai, John Parks
  • Publication number: 20040226511
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: November 18, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040226512
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: November 18, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040226658
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: November 18, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040224479
    Abstract: A method of filling a plurality of trenches etched in a substrate. In one embodiment the method includes depositing a layer of spin-on glass material over the substrate and into the plurality of trenches; curing the layer of spin-on glass material by exposing the spin-on glass material to electron beam radiation at a first temperature for a first period and subsequently exposing the spin-on glass material to an electron beam at a second temperature for a second period, where the second temperature is greater than the first temperature. The method concludes by depositing a layer of silica glass over the cured spin-on glass layer using a chemical vapor deposition technique.
    Type: Application
    Filed: May 6, 2003
    Publication date: November 11, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Rick J. Roberts, Michael S. Cox, Jun Zhao, Khaled Elsheref, Alexandros T. Demos
  • Publication number: 20040224496
    Abstract: A method of filling a plurality of trenches etched in a substrate. In one embodiment the method includes depositing a layer of spin-on glass material over the substrate and into the plurality of trenches; exposing the layer of spin-on glass material to a solvent; curing the layer of spin-on glass material; and depositing a layer of silica glass over the cured spin-on glass layer using a chemical vapor deposition technique.
    Type: Application
    Filed: December 5, 2003
    Publication date: November 11, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Rick J. Roberts, Michael S. Cox, Jun Zhao
  • Publication number: 20040224090
    Abstract: A combination of deposition and polishing steps are used to permit improved uniformity of a film after the combination of steps. Both the deposition and polishing are performed with processes that vary across the substrate. The combination of the varying deposition and etching rates results in a film that is substantially planar after the film has been polished. In some instances, it may be easier to control the variation of one of the two processes than the other so that the more controllable process is tailored to accommodate nonuniformities introduced by the less controllable process.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 11, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Bruno Geoffrion, Michael S. Cox, Lin Zhang, Bikram Kapoor, Anchuan Wang, Zhenjiang Cui
  • Publication number: 20040182517
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: September 23, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040185610
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Application
    Filed: January 30, 2004
    Publication date: September 23, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Patent number: 6755150
    Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: June 29, 2004
    Assignee: Applied Materials Inc.
    Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
  • Publication number: 20040115898
    Abstract: A method of depositing an insulating film over a substrate having a gap formed between two adjacent raised features. The method includes depositing one portion of the insulating film over the substrate and in the gap using a high density plasma process that has simultaneous deposition and sputtering components and depositing another portion of the insulating film over the substrate and in the gap using an atomic layer deposition process. In some embodiments the portion of the film deposited by an atomic layer deposition process is deposited over the portion of the film deposited using a high density plasma CVD technique. In other embodiments, the portion of the film deposited by a high density plasma CVD process is deposited over the portion of the film deposited using an atomic layer deposition process.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Farhad K. Moghadam, Michael S. Cox, Padmanabhan Krishnaraj, Thanh N. Pham, Zhenjiang Cui
  • Patent number: 6712020
    Abstract: A toroidal plasma source (28) within a substrate processing chamber (10). The toroidal plasma source forms a poloidal plasma with theta symmetry. The poloidal plasma current is essentially parallel to a surface of the plasma generating structure, thus reducing sputtering erosion of the inner walls. The plasma current is similarly essentially parallel to a process surface (32) of a substrate (34) within the chamber. In a further embodiment, a shaped member (66) between the substrate and the plasma source controls the plasma density in a selected fashion to enhance plasma processing uniformity.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: March 30, 2004
    Assignee: Applied Materials Inc.
    Inventors: Michael S. Cox, Canfeng Lai, Robert B. Majewski, David P. Wanamaker, Christopher T. Lane, Peter Loewenhardt, Shamouil Shamouilian, John P. Parks