Patents by Inventor Ming-Yeh Chuang

Ming-Yeh Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11152506
    Abstract: A semiconductor device includes an extended drain finFET. The drain drift region of the finFET extends between a drain contact region and a body of the finFET. The drain drift region includes an enhanced portion of the drain drift region between the drain contact region and the body. The drain drift region also includes a first charge balance region and a second charge balance region laterally adjacent to, and on opposite sides of, the enhanced portion of the drain drift region. The enhanced portion of the drain drift region and the drain contact region have a first conductivity type; the body, the first charge balance region, and the second charge balance region have a second, opposite, conductivity type. The drain drift region is wider than the body.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: October 19, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Ming-Yeh Chuang
  • Patent number: 11121224
    Abstract: An integrated circuit (IC) includes a field-plated transistor including a substrate having a semiconductor surface layer, at least one body region in the semiconductor surface layer, and at least a first trench isolation region adjacent to the body region having at least a first tapered sidewall that has an average angle along its full length of 15 to 70 degrees. A gate is over the body region. A field plate is over the first tapered trench isolation region. A source is on one side of the field plate and a drain is on an opposite side of the field plate. The IC also includes circuitry for realizing at least one circuit function having a plurality of transistors which are configured together with the field-plated transistor that utilize second trench isolation regions for isolation that have an average angle of 75 and 90 degrees.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: September 14, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ming-Yeh Chuang, Elizabeth Costner Stewart
  • Patent number: 11004971
    Abstract: A power transistor is provided with at least one transistor finger that lies within a semiconductor material. The gate oxide is segmented into a set of segments with thick field oxide between each segment in order to reduce gate capacitance and thereby improve a resistance times gate charge figure of merit.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: May 11, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer Pendharkar, Ming-yeh Chuang
  • Publication number: 20200258987
    Abstract: An integrated circuit (IC) includes a field-plated transistor including a substrate having a semiconductor surface layer, at least one body region in the semiconductor surface layer, and at least a first trench isolation region adjacent to the body region having at least a first tapered sidewall that has an average angle along its full length of 15 to 70 degrees. A gate is over the body region. A field plate is over the first tapered trench isolation region. A source is on one side of the field plate and a drain is on an opposite side of the field plate. The IC also includes circuitry for realizing at least one circuit function having a plurality of transistors which are configured together with the field-plated transistor that utilize second trench isolation regions for isolation that have an average angle of 75 and 90 degrees.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 13, 2020
    Inventors: MING-YEH CHUANG, ELIZABETH COSTNER STEWART
  • Patent number: 10586730
    Abstract: An electronic device includes an isolated region surrounded by an isolation ring over a semiconductor substrate. A well of a first conductivity type is located within the isolated region. A source region and a drain region of a second conductivity type are located over the well. A local-oxidation-of-silicon (LOCOS) layer is located on the well between the source and the drain, between the source and the isolation ring, and between the drain and the isolation ring. A gate electrode located between the source and the drain on said LOCOS layer.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 10, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Ming-Yeh Chuang
  • Publication number: 20190165168
    Abstract: A power transistor is provided with at least one transistor finger that lies within a semiconductor material. The gate oxide is segmented into a set of segments with thick field oxide between each segment in order to reduce gate capacitance and thereby improve a resistance times gate charge figure of merit.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Inventors: Sameer Pendharkar, Ming-yeh Chuang
  • Patent number: 10211335
    Abstract: A power transistor is provided with at least one transistor finger that lies within a semiconductor material. The gate oxide is segmented into a set of segments with thick field oxide between each segment in order to reduce gate capacitance and thereby improve a resistance times gate charge figure of merit.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: February 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer Pendharkar, Ming-yeh Chuang
  • Publication number: 20180308745
    Abstract: An electronic device includes an isolated region surrounded by an isolation ring over a semiconductor substrate. A well of a first conductivity type is located within the isolated region. A source region and a drain region of a second conductivity type are located over the well. A local-oxidation-of-silicon (LOCOS) layer is located on the well between the source and the drain, between the source and the isolation ring, and between the drain and the isolation ring. A gate electrode located between the source and the drain on said LOCOS layer.
    Type: Application
    Filed: June 18, 2018
    Publication date: October 25, 2018
    Inventor: Ming-Yeh CHUANG
  • Patent number: 10014206
    Abstract: An integrated circuit (IC) including at least one transistor having a metal-oxide-semiconductor (MOS) gate includes a substrate having a semiconductor surface. The transistor includes at least one trench isolation region in the semiconductor surface. Local oxidation of silicon (LOCOS) regions extend from within the semiconductor surface inside the trench isolation region defining a first LOCOS-free region and at least a second LOCOS-free region. A gate electrode is between the first LOCOS-free region and second LOCOS-free region including over a flat portion of a first of the LOCOS regions as its gate dielectric (LOCOS gate oxide). A first doped region is in the first LOCOS-free region and a second doped region is in the second LOCOS-free region on respective sides of the gate electrode both doped a first dopant type. A recessed channel region for the transistor is between the first and second doped regions under the LOCOS gate oxide.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: July 3, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Ming-Yeh Chuang
  • Publication number: 20180175191
    Abstract: A power transistor is provided with at least one transistor finger that lies within a semiconductor material. The gate oxide is segmented into a set of segments with thick field oxide between each segment in order to reduce gate capacitance and thereby improve a resistance times gate charge figure of merit.
    Type: Application
    Filed: December 4, 2017
    Publication date: June 21, 2018
    Inventors: Sameer Pendharkar, Ming-yeh Chuang
  • Publication number: 20180174887
    Abstract: An integrated circuit (IC) including at least one transistor having a metal-oxide-semiconductor (MOS) gate includes a substrate having a semiconductor surface. The transistor includes at least one trench isolation region in the semiconductor surface. Local oxidation of silicon (LOCOS) regions extend from within the semiconductor surface inside the trench isolation region defining a first LOCOS-free region and at least a second LOCOS-free region. A gate electrode is between the first LOCOS-free region and second LOCOS-free region including over a flat portion of a first of the LOCOS regions as its gate dielectric (LOCOS gate oxide). A first doped region is in the first LOCOS-free region and a second doped region is in the second LOCOS-free region on respective sides of the gate electrode both doped a first dopant type. A recessed channel region for the transistor is between the first and second doped regions under the LOCOS gate oxide.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 21, 2018
    Inventor: MING-YEH CHUANG
  • Patent number: 9865729
    Abstract: A power transistor is provided with at least one transistor finger that lies within a semiconductor material. The gate oxide is segmented into a set of segments with thick field oxide between each segment in order to reduce gate capacitance and thereby improve a resistance times gate charge figure of merit.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: January 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer Pendharkar, Ming-yeh Chuang
  • Patent number: 9105567
    Abstract: An integrated circuit structure includes a semiconductor doped area (NWell) having a first conductivity type, and a layer (PSD) that overlies a portion of said doped area (NWell) and has a doping of an opposite second type of conductivity that is opposite from the first conductivity type of said doped area (NWell), and said layer (PSD) having a corner in cross-section, and the doping of said doped area (NWell) forming a junction beneath said layer (PSD) with the doping of said doped area (NWell) diluted in a vicinity below the corner of said layer (PSD). Other integrated circuits, substructures, devices, processes of manufacturing, and processes of testing are also disclosed.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: August 11, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Ming-Yeh Chuang
  • Patent number: 8772103
    Abstract: A process of forming an integrated circuit containing an npn BJT and an NMOS transistor by cooling the integrated circuit substrate to 5° C. or colder and concurrently implanting n-type dopants, at a specified minimum dose according to species, into the emitter region of the BJT and the source and drain regions of the NMOS transistor. A process of forming an integrated circuit containing a pnp BJT and a PMOS transistor by cooling the integrated circuit substrate to 5° C. or colder and concurrently implanting p-type dopants, at a specified minimum dose according to species, into the emitter region of the BJT and the source and drain regions of the PMOS transistor. A process of forming an integrated circuit containing an implant region by cooling the integrated circuit substrate to 5° C. or colder and implanting atoms, at a specified minimum dose according to species, into the implant region.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: July 8, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Ming-Yeh Chuang
  • Patent number: 8609501
    Abstract: A method of fabricating an integrated circuit including bipolar transistors that reduces the effects of transistor performance degradation and transistor mismatch caused by charging during plasma etch, and the integrated circuit so formed. A fluorine implant is performed at those locations at which isolation dielectric structures between base and emitter are to be formed, prior to formation of the isolation dielectric. The isolation dielectric structures may be formed by either shallow trench isolation, in which the fluorine implant is performed after trench etch, or LOCOS oxidation, in which the fluorine implant is performed prior to thermal oxidation. The fluorine implant may be normal to the device surface or at an angle from the normal. Completion of the integrated circuit is then carried out, including the use of relatively thick copper metallization requiring plasma etch.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Weidong Tian, Ming-Yeh Chuang, Rajni J. Aggarwal
  • Publication number: 20130244411
    Abstract: An integrated circuit structure includes a semiconductor doped area (NWell) having a first conductivity type, and a layer (PSD) that overlies a portion of said doped area (NWell) and has a doping of an opposite second type of conductivity that is opposite from the first conductivity type of said doped area (NWell), and said layer (PSD) having a corner in cross-section, and the doping of said doped area (NWell) forming a junction beneath said layer (PSD) with the doping of said doped area (NWell) diluted in a vicinity below the corner of said layer (PSD). Other integrated circuits, substructures, devices, processes of manufacturing, and processes of testing are also disclosed.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Ming-Yeh Chuang
  • Patent number: 8455950
    Abstract: An integrated circuit structure includes a semiconductor doped area (NWell) having a first conductivity type, and a layer (PSD) that overlies a portion of said doped area (NWell) and has a doping of an opposite second type of conductivity that is opposite from the first conductivity type of said doped area (NWell), and said layer (PSD) having a corner in cross-section, and the doping of said doped area (NWell) forming a junction beneath said layer (PSD) with the doping of said doped area (NWell) diluted in a vicinity below the corner of said layer (PSD). Other integrated circuits, substructures, devices, processes of manufacturing, and processes of testing are also disclosed.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: June 4, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Ming-Yeh Chuang
  • Publication number: 20130065374
    Abstract: A method of fabricating an integrated circuit including bipolar transistors that reduces the effects of transistor performance degradation and transistor mismatch caused by charging during plasma etch, and the integrated circuit so formed. A fluorine implant is performed at those locations at which isolation dielectric structures between base and emitter are to be formed, prior to formation of the isolation dielectric. The isolation dielectric structures may be formed by either shallow trench isolation, in which the fluorine implant is performed after trench etch, or LOCOS oxidation, in which the fluorine implant is performed prior to thermal oxidation. The fluorine implant may be normal to the device surface or at an angle from the normal. Completion of the integrated circuit is then carried out, including the use of relatively thick copper metallization requiring plasma etch.
    Type: Application
    Filed: April 19, 2012
    Publication date: March 14, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Weidong Tian, Ming-Yeh Chuang, Rajni J. Aggarwal
  • Publication number: 20120100680
    Abstract: A process of forming an integrated circuit containing an npn BJT and an NMOS transistor by cooling the integrated circuit substrate to 5° C. or colder and concurrently implanting n-type dopants, at a specified minimum dose according to species, into the emitter region of the BJT and the source and drain regions of the NMOS transistor. A process of forming an integrated circuit containing a pnp BJT and a PMOS transistor by cooling the integrated circuit substrate to 5° C. or colder and concurrently implanting p-type dopants, at a specified minimum dose according to species, into the emitter region of the BJT and the source and drain regions of the PMOS transistor. A process of forming an integrated circuit containing an implant region by cooling the integrated circuit substrate to 5° C. or colder and implanting atoms, at a specified minimum dose according to species, into the implant region.
    Type: Application
    Filed: September 27, 2011
    Publication date: April 26, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Ming-Yeh CHUANG
  • Publication number: 20110298092
    Abstract: An integrated circuit structure includes a semiconductor doped area (NWell) having a first conductivity type, and a layer (PSD) that overlies a portion of said doped area (NWell) and has a doping of an opposite second type of conductivity that is opposite from the first conductivity type of said doped area (NWell), and said layer (PSD) having a corner in cross-section, and the doping of said doped area (NWell) forming a junction beneath said layer (PSD) with the doping of said doped area (NWell) diluted in a vicinity below the corner of said layer (PSD). Other integrated circuits, substructures, devices, processes of manufacturing, and processes of testing are also disclosed.
    Type: Application
    Filed: April 27, 2011
    Publication date: December 8, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Ming-Yeh Chuang