Patents by Inventor Munisamy Anandan

Munisamy Anandan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11482671
    Abstract: A deposition system that mitigates feathering in a directly deposited pattern of organic material is disclosed. Deposition systems in accordance with the present disclosure include an evaporation source, an electrically conductive shadow mask, and an electrically conductive field plate. The source imparts a negative charge on vaporized organic molecules as they are emitted toward a target substrate. The source and substrate are biased to produce an electric field having field lines that extend normally between them. The shadow mask and field plate are located between the source and substrate and each functions as an electrostatic lens that directs the charged vapor molecules toward propagation directions aligned with the field lines as the charged vapor molecules approach and pass through them.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: October 25, 2022
    Assignee: eMagin Corporation
    Inventors: Munisamy Anandan, Amalkumar P. Ghosh
  • Patent number: 11275315
    Abstract: A direct-deposition system forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through a pattern of through-holes in a shadow mask to deposit on the substrate in the desired pattern. The shadow mask is held in a mask chuck that enables the shadow mask and substrate to be separated by a distance that can be less than ten microns. Prior to reaching the shadow mask, vaporized atoms pass through a collimator that operates as a spatial filter that blocks any atoms not travelling along directions that are nearly normal to the substrate surface. Vaporized atoms that pass through the shadow mask exhibit little or no lateral spread after passing through through-holes and the material deposits on the substrate in a pattern that has very high fidelity with the through-hole pattern of the shadow mask.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: March 15, 2022
    Assignee: eMagin Corporation
    Inventors: Amalkumar P. Ghosh, Fridrich Vazan, Munisamy Anandan, Evan Donoghue, Ilyas I. Khayrullin, Tariq Ali, Kerry Tice
  • Patent number: 10903427
    Abstract: A deposition system that mitigates feathering in a directly deposited pattern of organic material is disclosed. Deposition systems in accordance with the present disclosure include an evaporation source, an electrically conductive shadow mask, and an electrically conductive field plate. The source imparts a negative charge on vaporized organic molecules as they are emitted toward a target substrate. The source and substrate are biased to produce an electric field having field lines that extend normally between them. The shadow mask and field plate are located between the source and substrate and each functions as an electrostatic lens that directs the charged vapor molecules toward propagation directions aligned with the field lines as the charged vapor molecules approach and pass through them.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: January 26, 2021
    Assignee: eMagin Corporation
    Inventors: Munisamy Anandan, Amalkumar P. Ghosh
  • Publication number: 20200411765
    Abstract: A deposition system that mitigates feathering in a directly deposited pattern of organic material is disclosed. Deposition systems in accordance with the present disclosure include an evaporation source, an electrically conductive shadow mask, and an electrically conductive field plate. The source imparts a negative charge on vaporized organic molecules as they are emitted toward a target substrate. The source and substrate are biased to produce an electric field having field lines that extend normally between them. The shadow mask and field plate are located between the source and substrate and each functions as an electrostatic lens that directs the charged vapor molecules toward propagation directions aligned with the field lines as the charged vapor molecules approach and pass through them.
    Type: Application
    Filed: September 15, 2020
    Publication date: December 31, 2020
    Inventors: Munisamy ANANDAN, Amalkumar P. GHOSH
  • Patent number: 10386731
    Abstract: A direct-deposition system capable of forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through a pattern of through-holes in a shadow mask to deposit on the substrate in the desired pattern. The shadow mask is held in a mask chuck that enables the shadow mask and substrate to be separated by a distance that can be less than ten microns. As a result, the vaporized atoms that pass through the shadow mask exhibit little or no lateral spread (i.e., feathering) after passing through its apertures and the material deposits on the substrate in a pattern that has very high fidelity with the aperture pattern of the shadow mask.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: August 20, 2019
    Assignee: eMagin Corporation
    Inventors: Amalkumar P. Ghosh, Fridrich Vazan, Munisamy Anandan, Evan Donoghue, Ilyas I. Khayrullin, Tariq Ali, Kerry Tice
  • Publication number: 20180315924
    Abstract: A deposition system that mitigates feathering in a directly deposited pattern of organic material is disclosed. Deposition systems in accordance with the present disclosure include an evaporation source, an electrically conductive shadow mask, and an electrically conductive field plate. The source imparts a negative charge on vaporized organic molecules as they are emitted toward a target substrate. The source and substrate are biased to produce an electric field having field lines that extend normally between them. The shadow mask and field plate are located between the source and substrate and each functions as an electrostatic lens that directs the charged vapor molecules toward propagation directions aligned with the field lines as the charged vapor molecules approach and pass through them.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 1, 2018
    Inventors: Munisamy ANANDAN, Amalkumar P. GHOSH
  • Patent number: 10072328
    Abstract: A direct-deposition system capable of forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through an aperture pattern of a shadow mask to deposit on the substrate in the desired pattern. Prior to reaching the shadow mask, the vaporized atoms pass through a collimator that operates as a spatial filter that blocks any atoms not travelling along directions that are nearly normal to the substrate surface. As a result, the vaporized atoms that pass through the shadow mask exhibit little or no lateral spread (i.e., feathering) after passing through its apertures and the material deposits on the substrate in a pattern that has very high fidelity with the aperture pattern of the shadow mask. The present invention, therefore, mitigates the need for relatively large space between regions of deposited material normally required in the prior art, thereby enabling high-resolution patterning.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: September 11, 2018
    Assignee: eMagin Corporation
    Inventors: Amalkumar P. Ghosh, Fridrich Vazan, Munisamy Anandan, Evan Donoghue, Ilyas I. Khayrullin, Tariq Ali, Kerry Tice
  • Publication number: 20170342542
    Abstract: A direct-deposition system capable of forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through an aperture pattern of a shadow mask to deposit on the substrate in the desired pattern. Prior to reaching the shadow mask, the vaporized atoms pass through a collimator that operates as a spatial filter that blocks any atoms not travelling along directions that are nearly normal to the substrate surface. As a result, the vaporized atoms that pass through the shadow mask exhibit little or no lateral spread (i.e., feathering) after passing through its apertures and the material deposits on the substrate in a pattern that has very high fidelity with the aperture pattern of the shadow mask. The present invention, therefore, mitigates the need for relatively large space between regions of deposited material normally required in the prior art, thereby enabling high-resolution patterning.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 30, 2017
    Inventors: Amalkumar P. GHOSH, Fridrich VAZAN, Munisamy ANANDAN, Evan DONOGHUE, Ilyas I. KHAYRULLIN, Tariq ALI, Kerry TICE
  • Publication number: 20170342543
    Abstract: A direct-deposition system forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through a pattern of through-holes in a shadow mask to deposit on the substrate in the desired pattern. The shadow mask is held in a mask chuck that enables the shadow mask and substrate to be separated by a distance that can be less than ten microns. Prior to reaching the shadow mask, vaporized atoms pass through a collimator that operates as a spatial filter that blocks any atoms not travelling along directions that are nearly normal to the substrate surface. Vaporized atoms that pass through the shadow mask exhibit little or no lateral spread after passing through through-holes and the material deposits on the substrate in a pattern that has very high fidelity with the through-hole pattern of the shadow mask.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 30, 2017
    Inventors: Amalkumar P. GHOSH, Fridrich VAZAN, Munisamy ANANDAN, Evan DONOGHUE, Ilyas I. KHAYRULLIN, Tariq ALI, Kerry TICE
  • Publication number: 20170343901
    Abstract: A direct-deposition system capable of forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through a pattern of through-holes in a shadow mask to deposit on the substrate in the desired pattern. The shadow mask is held in a mask chuck that enables the shadow mask and substrate to be separated by a distance that can be less than ten microns. As a result, the vaporized atoms that pass through the shadow mask exhibit little or no lateral spread (i.e., feathering) after passing through its apertures and the material deposits on the substrate in a pattern that has very high fidelity with the aperture pattern of the shadow mask.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 30, 2017
    Inventors: Amalkumar P. GHOSH, Fridrich VAZAN, Munisamy ANANDAN, Evan DONOGHUE, Ilyas I. KHAYRULLIN, Tariq ALI, Kerry TICE
  • Patent number: 9146419
    Abstract: A quantum rod based color pixel backlight system for Liquid Crystal Display, not requiring color filters and traditional polarizer, comprising multiplicity of LEDs, emitting ultraviolet or near-ultraviolet or blue light, assembled at one edge of a ultraviolet or near-ultraviolet or blue light transmitting light guide, which has other three edges and bottom surface coated with ultraviolet/near-ultraviolet reflecting layer and its top surface roughened with ultraviolet and near-ultraviolet extracting pixel patterns that contain aligned layers of quantum rods that emit different colors of plane polarized light in red, blue and green region with sharp spectrum, to increase the color gamut and optical efficiency of LCD screen, upon excitation by ultraviolet or near-ultraviolet or blue light.
    Type: Grant
    Filed: March 22, 2015
    Date of Patent: September 29, 2015
    Inventors: Munisamy Anandan, Aris Silzars
  • Patent number: 8496367
    Abstract: A ultra-violet based color pixel backlight system for color filter-less Liquid Crystal Display, comprising multiplicity of LEDs, emitting UV or NUV light in the wavelength range of 150 nm to 390 nm, assembled at one edge of a UV transmitting light guide, which has other three edges and bottom surface coated with UV reflecting layer and its top surface etched with UV and NUV extracting pixel patterns that contain phosphors that emit different colors of light in red, blue and green region when excited by UV or NUV light. The etched pixels contain Aluminum islands underneath the phosphor layers to reflect the visible rays generated by the phosphors of the pixel and suppress the visible light leaving the pixel as well as suppress the visible light from adjacent pixel entering the pixel. Thus suppressing the color mixing that could occur without the incorporation of Al islands.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: July 30, 2013
    Inventor: Munisamy Anandan
  • Patent number: 8459855
    Abstract: A ultra-violet based color pixel backlight system for color filter-less Liquid Crystal Display, comprising multiplicity of LEDs, emitting UV or NUV light in the wavelength range of 150 nm to 390 nm, assembled at one edge of a UV transmitting light guide, which has other three edges and bottom surface coated with UV reflecting layer and its top surface roughened with UV and NUV extracting pixel patterns that contain layers of quantum dots that emit different colors of light in red, blue and green region with sharp spectrum, to increase the color gamut on LCD screen, upon excitation by UV or NUV light. The formed pixels contain reflective islands, underneath the layers of quantum dots, to reflect the visible rays, generated by the pixelated quantum dots, towards the LCD and suppress the visible light leaving the pixel as well as suppress the visible light from adjacent pixels entering the pixel. Thus suppressing the color mixing that could occur without the incorporation of reflective islands.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: June 11, 2013
    Inventors: Munisamy Anandan, Aris K Silzars
  • Publication number: 20110176328
    Abstract: A ultra-violet based color pixel backlight system for color filter-less Liquid Crystal Display, comprising multiplicity of LEDs, emitting UV or NUV light in the wavelength range of 150 nm to 390 nm, assembled at one edge of a UV transmitting light guide, which has other three edges and bottom surface coated with UV reflecting layer and its top surface roughened with UV and NUV extracting pixel patterns that contain layers of quantum dots that emit different colors of light in red, blue and green region with sharp spectrum, to increase the color gamut on LCD screen, upon excitation by UV or NUV light. The formed pixels contain reflective islands, underneath the layers of quantum dots, to reflect the visible rays, generated by the pixelated quantum dots, towards the LCD and suppress the visible light leaving the pixel as well as suppress the visible light from adjacent pixels entering the pixel. Thus suppressing the color mixing that could occur without the incorporation of reflective islands.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 21, 2011
    Inventors: Munisamy Anandan, Aris Silzars
  • Publication number: 20110164431
    Abstract: A ultra-violet based color pixel backlight system for color filter-less Liquid Crystal Display, comprising multiplicity of LEDs, emitting UV or NUV light in the wavelength range of 150 nm to 390 nm, assembled at one edge of a UV transmitting light guide, which has other three edges and bottom surface coated with UV reflecting layer and its top surface etched with UV and NUV extracting pixel patterns that contain phosphors that emit different colors of light in red, blue and green region when excited by UV or NUV light. The etched pixels contain Aluminum islands underneath the phosphor layers to reflect the visible rays generated by the phosphors of the pixel and suppress the visible light leaving the pixel as well as suppress the visible light from adjacent pixel entering the pixel. Thus suppressing the color mixing that could occur without the incorporation of Al islands.
    Type: Application
    Filed: March 11, 2011
    Publication date: July 7, 2011
    Inventor: Munisamy Anandan
  • Patent number: 7935963
    Abstract: A hybrid organic light emitting diode employing fluorescent family of blue light-emitting OLED and phosphorescent family of red and green light emitting OLED, each family being electrically isolated for driving current in to them independent of each other and thus prevent overloading the phosphorescent family when fluorescent family of OLED is driven at high current density. The electrical isolation built in to the device gives long life for the hybrid OLED and yields high brightness. The independent driving also yields additional advantage of varying the color temperature of white light from the device and thus enables the device to function as a variable color OLED lamp.
    Type: Grant
    Filed: August 22, 2009
    Date of Patent: May 3, 2011
    Inventor: Munisamy Anandan
  • Patent number: 7934862
    Abstract: A ultra-violet based color pixel backlight system for Liquid Crystal Display, that does not contain the traditional color filters, comprising multiplicity of LEDs, emitting UV light in the wavelength range of 250 nm to 390 nm, assembled at one edge of a UV transmitting light guide, which has other three edges and bottom surface coated with UV reflecting layer and its top surface etched with UV extracting pixel patterns that contain phosphors that emit different colors of light in red, blue and green region when excited by UV light. A sheet of micro-lens is assembled between the light guide and the LCD to have the etched pixels in substantial alignment with the pixels of LCD and the lenses of the sheet of micro-lens. Thus red, blue and green pixels of light from the light guide passes through the intended red, blue and green pixels of LCD that has no traditional color filters, resulting in color pixel backlighting that enhances the optical efficiency of LCD.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: May 3, 2011
    Inventor: Munisamy Anandan
  • Publication number: 20100123150
    Abstract: A hybrid organic light emitting diode employing fluorescent family of blue light-emitting OLED and phosphorescent family of red and green light emitting OLED, each family being electrically isolated for driving current in to them independent of each other and thus prevent overloading the phosphorescent family when fluorescent family of OLED is driven at high current density. The electrical isolation built in to the device gives long life for the hybrid OLED and yields high brightness. The independent driving also yields additional advantage of varying the color temperature of white light from the device and thus enables the device to function as a variable color OLED lamp.
    Type: Application
    Filed: August 22, 2009
    Publication date: May 20, 2010
    Inventor: Munisamy Anandan
  • Patent number: 7663312
    Abstract: A flexible organic light emitting light source employing a flexible substrate that comprises a thin ployimide layer sandwiched by two metallic layers of which one metallic layer whose surface not in contact with polyimide layer contains OLED device that is coated with pore-free conformal barrier coating of inorganic oxide through Atomic Layer Epitaxy process and the barrier coating being completely encapsulated by a UV cured thick hard coat. The flexible device is sealed with a flexible plastic cover and the bottom external surface of metallic layer is integrated with a lamp drive circuit.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: February 16, 2010
    Inventor: Munisamy Anandan
  • Publication number: 20090080215
    Abstract: A ultra-violet based color pixel backlight system for Liquid Crystal Display, that does not contain the traditional color filters, comprising multiplicity of LEDs, emitting UV light in the wavelength range of 250 nm to 390 nm, assembled at one edge of a UV transmitting light guide, which has other three edges and bottom surface coated with UV reflecting layer and its top surface etched with UV extracting pixel patterns that contain phosphors that emit different colors of light in red, blue and green region when excited by UV light. A sheet of micro-lens is assembled between the light guide and the LCD to have the etched pixels in substantial alignment with the pixels of LCD and the lenses of the sheet of micro-lens. Thus red, blue and green pixels of light from the light guide passes through the intended red, blue and green pixels of LCD that has no traditional color filters, resulting in color pixel backlighting that enhances the optical efficiency of LCD.
    Type: Application
    Filed: July 28, 2008
    Publication date: March 26, 2009
    Inventor: Munisamy Anandan