Patents by Inventor Naho Mizuhara

Naho Mizuhara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938471
    Abstract: A metal porous body has a skeleton of a three-dimensional network structure, an outer layer portion of the skeleton having a second pore smaller in size than a first pore formed by the skeleton, wherein the outer layer portion is a metal layer, and a water vapor reforming catalyst is supported in the outer layer portion.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 26, 2024
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Naho Mizuhara, Mitsuyasu Ogawa, Takahiro Higashino, Hiromasa Tawarayama, Masatoshi Majima, Yoshitaka Ogasawara
  • Patent number: 11883801
    Abstract: A steam reforming catalyst that promotes production of hydrogen from a gas containing a hydrocarbon in the presence of steam includes a carrier and two or more catalyst metals supported on the carrier and including a first metal and a second metal. The first metal includes Ni, the second metal includes at least one of Co and Ru, and the carrier is represented by LaNbO4 or La1-xSrxNbO4 where x is in a range of 0<x?0.12.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: January 30, 2024
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Takahiro Higashino, Naho Mizuhara, Hiromasa Tawarayama
  • Publication number: 20240006642
    Abstract: A proton-conductive cell structure includes an air electrode, a hydrogen electrode, and a solid electrolyte layer disposed between the air electrode and the hydrogen electrode, wherein the solid electrolyte layer includes at least a first solid electrolyte layer formed of a compact material. The first solid electrolyte layer includes a metal oxide having a perovskite structure and represented by Formula 1 below, a ratio of Sr to a total amount of Ba and Sr in an air-electrode-side near-surface region of the first solid electrolyte layer is 0.4 or more, and a ratio of Sr to a total amount of Ba and Sr in a hydrogen-electrode-side near-surface region of the first solid electrolyte layer is 0.003 to 0.3.
    Type: Application
    Filed: May 28, 2021
    Publication date: January 4, 2024
    Inventors: Takahiro HIGASHINO, Yohei NODA, Naho MIZUHARA, Mitsuyasu OGAWA, Hiromasa TAWARAYAMA, Masatoshi MAJIMA, Akiko FUNAKOSHI
  • Patent number: 11757106
    Abstract: A porous body includes a framework having a three-dimensional network structure, the framework having a body including crystal grains including nickel and cobalt as constituent elements, the cobalt having a proportion in mass of 0.2 or more and 0.8 or less with respect to a total mass of the nickel and the cobalt, the crystal grains having a shorter grain diameter of 2 ?m or more, as determined in a first observed image obtained by observing the body of the framework in cross section at a magnification of 200 times.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: September 12, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Koma Numata, Masatoshi Majima, Mitsuyasu Ogawa, Kazuki Okuno, Naho Mizuhara, Ryoko Kanda
  • Publication number: 20230135982
    Abstract: A electrochemical cell device includes: a cell having a first main surface and a second main surface opposite to the first main surface; a first current collector having a third main surface facing the first main surface; and a second current collector having a fourth main surface facing the second main surface. The cell is warped to protrude from the second main surface toward the first main surface. The third main surface is provided with a recess at a position facing a central portion of the first main surface. The fourth main surface includes a protrusion at a position facing a central portion of the second main surface. Each of the first current collector and the second current collector is constituted of one or more metal porous body sheets each composed of a metal porous body having a framework with a three-dimensional network structure.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 4, 2023
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Koma NUMATA, Masatoshi MAJIMA, Mitsuyasu OGAWA, Naho MIZUHARA, Yohei NODA
  • Publication number: 20230099013
    Abstract: A porous body includes a framework having a three-dimensional network structure, the framework having a body including crystal grains including nickel and cobalt as constituent elements, the cobalt having a proportion in mass of 0.2 or more and 0.8 or less with respect to a total mass of the nickel and the cobalt, the crystal grains having a shorter grain diameter of 2 ?m or more, as determined in a first observed image obtained by observing the body of the framework in cross section at a magnification of 200 times.
    Type: Application
    Filed: December 24, 2019
    Publication date: March 30, 2023
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Koma NUMATA, Masatoshi MAJIMA, Mitsuyasu OGAWA, Kazuki OKUNO, Naho MIZUHARA, Ryoko KANDA
  • Patent number: 11545690
    Abstract: A proton conductor contains a metal oxide that has a perovskite structure and that is represented by formula (1): AxB1-yMyO3-?, where an element A is at least one element selected from the group consisting of Ba, Ca, and Sr, an element B is at least one element selected from the group consisting of Ce and Zr, an element M is at least one element selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In, and Sc, ? indicates an oxygen deficiency amount, and 0.95?x?1 and 0<y?0.5 are satisfied.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: January 3, 2023
    Assignees: KYOTO UNIVERSITY, SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahiro Higashino, Yohei Noda, Chihiro Hiraiwa, Naho Mizuhara, Mitsuyasu Ogawa, Hiromasa Tawarayama, Masatoshi Majima, Tetsuya Uda, Donglin Han, Takayuki Onishi
  • Publication number: 20210213430
    Abstract: A steam reforming catalyst that promotes production of hydrogen from a gas containing a hydrocarbon in the presence of steam includes a carrier and two or more catalyst metals supported on the carrier and including a first metal and a second metal. The first metal includes Ni, the second metal includes at least one of Co and Ru, and the carrier is represented by LaNbO4 or La1-xSrxNbO4 where x is in a range of 0<x?0.12.
    Type: Application
    Filed: May 22, 2019
    Publication date: July 15, 2021
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Takahiro HIGASHINO, Naho MIZUHARA, Hiromasa TAWARAYAMA
  • Publication number: 20210162393
    Abstract: A metal porous body has a skeleton of a three-dimensional network structure, an outer layer portion of the skeleton having a second pore smaller in size than a first pore formed by the skeleton, wherein the outer layer portion is a metal layer, and a water vapor reforming catalyst is supported in the outer layer portion.
    Type: Application
    Filed: June 21, 2019
    Publication date: June 3, 2021
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro HIRAIWA, Naho MIZUHARA, Mitsuyasu OGAWA, Takahiro HIGASHINO, Hiromasa TAWARAYAMA, Masatoshi MAJIMA, Yoshitaka OGASAWARA
  • Publication number: 20210083301
    Abstract: A metal porous body having a frame of a three-dimensional network structure, the frame being formed of a plurality of bone members connected to each other, the plurality of bone members defining openings in a surface of the metal porous body, the plurality of bone members defining voids inside the metal porous body, the openings and the voids communicating with each other, a porosity being from 1 volume % to 55 volume %, a density being from 3 g/cm3 to 10 g/cm3.
    Type: Application
    Filed: January 9, 2019
    Publication date: March 18, 2021
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Takahiro HIGASHINO, Naho MIZUHARA, Hiromasa TAWARAYAMA
  • Publication number: 20210066728
    Abstract: A cell structure includes a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode, the cathode being in the form of a sheet, the anode being in the form of a sheet, the solid electrolyte layer being in the form of a sheet, the solid electrolyte layer being disposed on the anode, the cathode being disposed on the solid electrolyte layer, the cathode having a resistance Rc, the anode and the solid electrolyte layer having a resistance Ra, the resistance Rc and the resistance Ra satisfying a relationship of Rc/Ra?0.3, the cathode including a first metal oxide having a perovskite crystal structure, the cathode having a thickness larger than 15 ?m and equal to or less than 30 ?m.
    Type: Application
    Filed: February 15, 2019
    Publication date: March 4, 2021
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro HIRAIWA, Mitsuyasu OGAWA, Naho MIZUHARA, Hiromasa TAWARAYAMA, Takahiro HIGASHINO, Masatoshi MAJIMA
  • Publication number: 20210013534
    Abstract: An electrolyte layer-anode composite member includes an anode including a first metal oxide having a perovskite crystal structure, and a solid electrolyte layer including a second metal oxide having a perovskite crystal structure, the anode including at least one of nickel and a nickel compound, the anode having a sheet-like shape, the solid electrolyte layer having a sheet-like shape, the solid electrolyte layer being stacked on the anode, the anode having a thickness Ta of 850 ?m or more. The thickness Ta of the anode and a thickness Te of the solid electrolyte layer may satisfy a relation of 0.003?Te/Ta?0.036. The thickness Ta of the anode and a diameter Da of the anode may satisfy a relation of 55?Ta/Da?300.
    Type: Application
    Filed: February 14, 2019
    Publication date: January 14, 2021
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro HIRAIWA, Naho MIZUHARA, Mitsuyasu OGAWA, Hiromasa TAWARAYAMA, Takahiro HIGASHINO, Masatoshi MAJIMA
  • Publication number: 20210005916
    Abstract: A proton conductor contains a metal oxide that has a perovskite structure and that is represented by formula (1): AxB1-yMyO3-?, where an element A is at least one element selected from the group consisting of Ba, Ca, and Sr, an element B is at least one element selected from the group consisting of Ce and Zr, an element M is at least one element selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In, and Sc, ? indicates an oxygen deficiency amount, and 0.95?x?1 and 0<y?0.5 are satisfied.
    Type: Application
    Filed: November 16, 2018
    Publication date: January 7, 2021
    Applicants: Kyoto University, SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahiro HIGASHINO, Yohei NODA, Chihiro HIRAIWA, Naho MIZUHARA, Mitsuyasu OGAWA, Hiromasa TAWARAYAMA, Masatoshi MAJIMA, Tetsuya UDA, Donglin HAN, Takayuki ONISHI
  • Publication number: 20210005913
    Abstract: Provided is an electrolyte layer-anode composite member for a fuel cell, the electrolyte layer-anode composite member including an anode and a solid electrolyte layer having ion conductivity, the anode being an aggregate of granules including a composite metal, the composite metal including a nickel element and an iron element, the granules including a plurality of pores, the composite metal accounting for 80% by mass or more of the anode, the anode having a bulk density of 75% or less of a real density of the composite metal. Also provided is a cell structure including the electrolyte layer-anode composite member for a fuel cell described above, and a cathode arranged on a side of the solid electrolyte layer.
    Type: Application
    Filed: February 15, 2019
    Publication date: January 7, 2021
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Takahiro HIGASHINO, Naho MIZUHARA, Hiromasa TAWARAYAMA
  • Patent number: 10734665
    Abstract: A method for producing a cell structure includes: a step of firing a laminated body of a layer containing an anode material and a layer containing a solid electrolyte material, to obtain a joined body of an anode and a solid electrolyte layer; a step of laminating a layer containing a cathode material on a surface of the solid electrolyte layer, and firing the obtained laminated body to obtain a cathode. The anode material contains a metal oxide Ma1 and a nickel compound. The metal oxide Ma1 is a metal oxide having a perovskite structure represented by A1x1B11-y1M1y1O3-? (wherein: A1 is at least one of Ba, Ca, and Sr; B1 is at least one of Ce and Zr; M1 is at least one of Y, Yb, Er, Ho, Tm, Gd, In, and Sc; 0.85?x1?0.99; 0<y1?0.5; and ? is an oxygen deficiency amount).
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: August 4, 2020
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., KYOTO UNIVERSITY
    Inventors: Takahiro Higashino, Kazunari Miyamoto, Yohei Noda, Chihiro Hiraiwa, Naho Mizuhara, Hiromasa Tawarayama, Hisao Takeuchi, Masatoshi Majima, Tetsuya Uda, Donglin Han
  • Patent number: 10573904
    Abstract: A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body adjacent to at least one of the cathode and the anode and having a three-dimensional mesh-like skeleton; a second porous metal body stacked to be adjacent to the first porous metal body and having a three-dimensional mesh-like skeleton; and an interconnector adjacent to the second porous metal body. The first porous metal body has a pore size smaller than a pore size of the second porous metal body.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 25, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Hiromasa Tawarayama, Naho Mizuhara, Takahiro Higashino, Yohei Noda, Kazunari Miyamoto, Toshihiro Yoshida
  • Patent number: 10553880
    Abstract: A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body arranged to oppose at least one of the cathode and the anode; and an interconnector arranged to oppose the first porous metal body and having a gas supply port and a gas discharge port formed therein. The first porous metal body includes a porous metal body S that opposes the gas supply port and has a three-dimensional mesh-like skeleton, and a porous metal body H that has a three-dimensional mesh-like skeleton and is other than the porous metal body S. A porosity Ps of the porous metal body S and a porosity Ph of the porous metal body H satisfy a relationship: Ps<Ph.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 4, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Hiromasa Tawarayama, Naho Mizuhara, Takahiro Higashino, Yohei Noda, Kazunari Miyamoto, Toshihiro Yoshida
  • Patent number: 10505196
    Abstract: In an SOFC, a solid electrolyte layer and an anode are integrated with each other to provide an electrolyte layer-anode assembly. The anode contains a nickel element and a first proton conductor. The first proton conductor is composed of a first perovskite oxide having proton conductivity. The first perovskite oxide has an AXO3-type crystal structure, the A-site containing Ba, the X-site containing Y and at least one selected from the group consisting of Zr and Ce. The nickel element is at least partially in the form of NiO. The anode has a porosity Pa of 10% or more by volume when INi/INiO?0.1, where INi/INiO denotes a relative intensity ratio of the peak intensity INi of metallic Ni to the peak intensity INiO of the NiO in an XRD spectrum of the anode.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: December 10, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Naho Mizuhara, Masatoshi Majima, Hiromasa Tawarayama, Chihiro Hiraiwa, Takahiro Higashino, Yohei Noda, Kazunari Miyamoto
  • Patent number: 10431840
    Abstract: Provided are a membrane electrode assembly, including a solid electrolyte layer, an anode layer provided on one side of the solid electrolyte layer, and a cathode layer provided on the other side of the solid electrolyte layer, the anode layer being stacked on the solid electrolyte layer to be pressed thereagainst, the anode layer including a porous anode member having electrical conductivity; and a method for manufacturing the same.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: October 1, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Hiromasa Tawarayama, Takahiro Higashino, Yohei Noda, Naho Mizuhara, Tatsumi Ishihara
  • Patent number: 10424801
    Abstract: A cell structure includes a cathode, an anode, and a protonically conductive solid electrolyte layer between the cathode and the anode. The solid electrolyte layer contains a compound having a perovskite structure and containing zirconium, cerium, and a rare-earth element other than cerium. If the solid electrolyte layer has a thickness of T, the elemental ratio of zirconium to cerium at a position 0.25 T from a surface of the solid electrolyte layer opposite the cathode, ZrC/CeC, and the elemental ratio of zirconium to cerium at a position 0.25 T from a surface of the solid electrolyte layer opposite the anode, ZrA/CeA, satisfy ZrC/CeC>ZrA/CeA, and ZrC/CeC>1.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: September 24, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahiro Higashino, Yohei Noda, Chihiro Hiraiwa, Naho Mizuhara, Hiromasa Tawarayama, Hisao Takeuchi, Masatoshi Majima