Patents by Inventor Naho Mizuhara

Naho Mizuhara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130260280
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Application
    Filed: November 29, 2011
    Publication date: October 3, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20130224612
    Abstract: Provided are a gas decomposition component, a power generation apparatus including the gas decomposition component, and a method for decomposing a gas. A gas decomposition component includes a cylindrical MEA including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure; a first gas channel through which a first gas that is decomposed flows, the first gas channel being disposed inside the cylindrical MEA; and a second gas channel through which a second gas flows, the second gas channel being disposed outside the cylindrical MEA, wherein the gas decomposition component further includes a heater for heating the entirety of the component; and a preheating pipe through which the first gas to be introduced into the first gas channel passes beforehand to be preheated.
    Type: Application
    Filed: October 21, 2011
    Publication date: August 29, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20130171542
    Abstract: A gas decomposition component includes a cylindrical membrane electrode assembly (MEA) including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure, wherein an end portion of the cylindrical MEA is sealed, a gas guide pipe is inserted through another end portion of the cylindrical MEA into an inner space of the cylindrical MEA to form a cylindrical channel between the gas guide pipe and an inner circumferential surface of the cylindrical MEA, and a gas flowing through the gas guide pipe toward the sealed portion is made to flow out of the gas guide pipe in a region near the sealed portion so that a flow direction of the gas is reversed and the gas flows through the cylindrical channel in a direction opposite to the flow direction in the guide pipe.
    Type: Application
    Filed: October 13, 2011
    Publication date: July 4, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Patent number: 8470090
    Abstract: Affords large-diametric-span AlN crystals, applicable to various types of semiconductor devices, with superior crystallinity, a method of growing the AlN crystals, and AlN crystal substrates. The AlN crystal growth method is a method in which an AlN crystal (4) is grown by vapor-phase epitaxy onto a seed crystal substrate (2) placed inside a crystal-growth compartment (24) within a crystal-growth vessel (12) provided within a reaction chamber, and is characterized in that during growth of the crystal, carbon-containing gas is supplied to the inside of the crystal-growth compartment (24).
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: June 25, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naho Mizuhara, Michimasa Miyanaga, Tomohiro Kawase, Shinsuke Fujiwara
  • Patent number: 8404042
    Abstract: III-nitride crystal composites are made up of especially processed crystal slices cut from III-nitride bulk crystal having, ordinarily, a {0001} major surface and disposed adjoining each other sideways, and of III-nitride crystal epitaxially on the bulk-crystal slices. The slices are arranged in such a way that their major surfaces parallel each other, but are not necessarily flush with each other, and so that the [0001] directions in the slices are oriented in the same way.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 26, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Patent number: 8377204
    Abstract: Affords methods of growing III nitride single crystals of favorable crystallinity with excellent reproducibility, and the III nitride crystals obtained by the growth methods. One method grows a III nitride single crystal (3) inside a crystal-growth vessel (11), the method being characterized in that a porous body formed from a metal carbide, whose porosity is between 0.1% and 70% is employed in at least a portion of the crystal-growth vessel (11). Employing the crystal-growth vessel (11) makes it possible to discharge from 1% to 50% of a source gas (4) inside the crystal-growth vessel (11) via the pores in the porous body to the outside of the crystal-growth vessel (11).
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 19, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Michimasa Miyanaga, Naho Mizuhara, Shinsuke Fujiwara, Seiji Nakahata, Hideaki Nakahata
  • Patent number: 8367577
    Abstract: Flat, thin AlN membranes and methods of their manufacture are made available. An AlN thin film (2) contains between 0.001 wt. % and 10 wt. % additive atomic element of one or more type selected from Group-III atoms, Group-IV atoms and Group-V atoms. Onto a base material (1), the AlN thin film (2) is formable utilizing a plasma generated by setting inside a vacuum chamber a sintered AlN ceramic containing between 0.001 wt. % and 10 wt. % additive atomic element of one or more type selected from Group-III atoms, Group-IV atoms and Group-V atoms, and with the base material having been set within the vacuum chamber, irradiating the sintered AlN ceramic with a laser.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: February 5, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Satoh, Naho Mizuhara, Keisuke Tanizaki, Michimasa Miyanaga, Takashi Sakurada, Yoshiyuki Yamamoto, Hideaki Nakahata
  • Patent number: 8363326
    Abstract: A method of producing an AlxGa(1-x)N (0<x?1) single crystal of the present invention is directed to growing an AlxGa(1-x)N single crystal by sublimation. The method includes the steps of preparing an underlying substrate, preparing a raw material of high purity, and growing an AlxGa(1-x)N single crystal on the underlying substrate by sublimating the raw material. At the AlxGa(1-x)N single crystal, the refractive index with respect to light at a wavelength greater than or equal to 250 nm and less than or equal to 300 nm is greater than or equal to 2.4, and the refractive index with respect to light at a wavelength greater than 300 nm and less than 350 nm is greater than or equal to 2.3, measured at 300K.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: January 29, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Satoshi Arakawa, Takashi Sakurada, Yoshiyuki Yamamoto, Issei Satoh, Keisuke Tanizaki, Hideaki Nakahata, Naho Mizuhara, Michimasa Miyanaga
  • Patent number: 8361226
    Abstract: This III-nitride single-crystal growth method, being a method of growing a AlxGa1-xN single crystal (4) by sublimation, is furnished with a step of placing source material (1) in a crucible (12), and a step of sublimating the source material (1) to grow AlxGa1-xN (0<x?1) single crystal (4) in the crucible (12), with the AlyGa1-yN (0<y?1) source (2) and an impurity element (3), which is at least one selected from the group consisting of IVb elements and IIa elements, being included in the source material (1). This growth method makes it possible to stably grow bulk III-nitride single crystals of low dislocation density and of favorable crystallinity.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: January 29, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Michimasa Miyanaga, Naho Mizuhara, Shinsuke Fujiwara, Hideaki Nakahata, Tomohiro Kawase
  • Publication number: 20120315445
    Abstract: III-nitride crystal composites are made up of especially processed crystal slices cut from III-nitride bulk crystal having, ordinarily, a {0001} major surface and disposed adjoining each other sideways, and of III-nitride crystal epitaxially on the bulk-crystal slices. The slices are arranged in such a way that their major surfaces parallel each other, but are not necessarily flush with each other, and so that the [0001] directions in the slices are oriented in the same way.
    Type: Application
    Filed: August 2, 2012
    Publication date: December 13, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Patent number: 8323402
    Abstract: Methods of growing and manufacturing aluminum nitride crystal, and aluminum nitride crystal produced by the methods. Preventing sublimation of the starting substrate allows aluminum nitride crystal of excellent crystallinity to be grown at improved growth rates. The aluminum nitride crystal growth method includes the following steps. Initially, a laminar baseplate is prepared, furnished with a starting substrate having a major surface and a back side, a first layer formed on the back side, and a second layer formed on the first layer. Aluminum nitride crystal is then grown onto the major surface of the starting substrate by vapor deposition. The first layer is made of a substance that at the temperatures at which the aluminum nitride crystal is grown is less liable to sublimate than the starting substrate. The second layer is made of a substance whose thermal conductivity is higher than that of the first layer.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 4, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keisuke Tanizaki, Naho Mizuhara, Michimasa Miyanaga, Hideaki Nakahata, Yoshiyuki Yamamoto
  • Patent number: 8293012
    Abstract: Affords AlxGa1-xN crystal growth methods, as well as AlxGa1-xN crystal substrates, wherein bulk, low-dislocation-density crystals are obtained. The AlxGa1-xN crystal (0<x?1) growth method is a method of growing, by a vapor-phase technique, an AlxGa1-xN crystal (10), characterized by forming, in the growing of the crystal, at least one pit (10p) having a plurality of facets (12) on the major growth plane (11) of the AlxGa1-xN crystal (10), and growing the AlxGa1-xN crystal (10) with the at least one pit (10p) being present, to reduce dislocations in the AlxGa1-xN crystal (10).
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: October 23, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Michimasa Miyanaga, Naho Mizuhara, Hideaki Nakahata
  • Patent number: 8293011
    Abstract: A method for growing a Group III nitride semiconductor crystal is provided with the following steps: First, a chamber including a heat-shielding portion for shielding heat radiation from a material 13 therein is prepared. Then, material 13 is arranged on one side of heat-shielding portion in chamber. Then, by heating material to be sublimated, a material gas is deposited on the other side of heat-shielding portion in chamber so that a Group III nitride semiconductor crystal is grown.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 23, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Michimasa Miyanaga, Naho Mizuhara, Keisuke Tanizaki, Issei Satoh, Hisao Takeuchi, Hideaki Nakahata
  • Patent number: 8258051
    Abstract: The present III-nitride crystal manufacturing method, a method of manufacturing a III-nitride crystal (20) having a major surface (20m) of plane orientation other than {0001}, designated by choice, includes: a step of slicing III-nitride bulk crystal (1) into a plurality of III-nitride crystal substrates (10p), (10q) having major surfaces (10pm), (10qm) of the designated plane orientation; a step of disposing the substrates (10p), (10q) adjoining each other sideways in such a way that the major surfaces (10pm), (10qm) of the substrates (10p), (10q) parallel each other and so that the [0001] directions in the substrates (10p), (10q) are oriented in the same way; and a step of growing III-nitride crystal (20) onto the major surfaces (10pm), (10qm) of the substrates (10p), (10q).
    Type: Grant
    Filed: May 17, 2009
    Date of Patent: September 4, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Publication number: 20110114016
    Abstract: There is provided an AlGaN bulk crystal manufacturing method for manufacturing a high-quality AlGaN bulk crystal having a large thickness. Also, there is provided an AlGaN substrate manufacturing method for manufacturing a high-quality AlGaN substrate. The AlGaN bulk crystal manufacturing method includes the following steps: First, a support substrate composed of AlaGa(1-a)N (0<a?1) is prepared. Then, a bulk crystal composed of AlbGa(1-b)N (0<b<1) with a primary surface is grown on the support substrate. The composition ratio a of Al in the support substrate is larger than the composition ratio b of Al in the bulk crystal. The AlGaN substrate manufacturing method includes a step of cutting out at least one AlbGa(1-b)N substrate from the bulk crystal.
    Type: Application
    Filed: July 16, 2009
    Publication date: May 19, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Michimasa Miyanaga, Naho Mizuhara, Keisuke Tanizaki, Issei Satoh, Hideaki Nakahata
  • Publication number: 20110110840
    Abstract: A method for producing a group III-nitride crystal having a large thickness and high quality and a group III-nitride crystal are provided. A method for producing a group III-nitride crystal 13 includes the following steps: A underlying substrate 11 having a major surface 11a tilted toward the <1-100> direction with respect to the (0001) plane is prepared. The group III-nitride crystal 13 is grown by vapor-phase epitaxy on the major surface 11a of the underlying substrate 11. The major surface 11a of the underlying substrate 11 is preferably a plane tilted at an angle of ?5° to 5° from the {01-10} plane.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 12, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD
    Inventors: Michimasa Miyanaga, Naho Mizuhara, Keisuke Tanizaki, Issei Satoh, Hideaki Nakahata, Satoshi Arakawa, Yoshiyuki Yamamoto, Takashi Sakurada
  • Publication number: 20110109973
    Abstract: A method of producing an AlxGa(1-x)N (0<x?1) single crystal of the present invention is directed to growing an AlxGa(1-x)N single crystal by sublimation. The method includes the steps of preparing an underlying substrate, preparing a raw material of high purity, and growing an AlxGa(1-x)N single crystal on the underlying substrate by sublimating the raw material. At the AlxGa(1-x)N single crystal, the refractive index with respect to light at a wavelength greater than or equal to 250 nm and less than or equal to 300 nm is greater than or equal to 2.4, and the refractive index with respect to light at a wavelength greater than 300 nm and less than 350 nm is greater than or equal to 2.3, measured at 300K.
    Type: Application
    Filed: June 25, 2009
    Publication date: May 12, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Satoshi Arakawa, Takashi Sakurada, Yoshiyuki Yamamoto, Issei Satoh, Keisuke Tanizaki, Hideaki Nakahata, Naho Mizuhara, Michimasa Miyanaga
  • Publication number: 20110104438
    Abstract: A method of producing an AlxGa(1-x)N (0<x?1) single crystal is directed to growing an AlxGa(1-x)N single crystal by sublimation. The method includes the steps of preparing an underlying substrate having a composition ratio x identical to the composition ratio of the AlxGa(1-x)N single crystal, preparing a raw material of high purity, and growing an AlxGa(1-x)N single crystal on the underlying substrate by sublimating the raw material. The AlxGa(1-x)N single crystal has an absorption coefficient less than or equal to 100 cm?1 with respect to light at a wavelength greater than or equal to 250 nm and less than 300 nm, and an absorption coefficient less than or equal to 21 cm?1 with respect to light at a wavelength greater than or equal to 300 nm and less than 350 nm.
    Type: Application
    Filed: June 25, 2009
    Publication date: May 5, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Satoshi Arakawa, Takashi Sakurada, Yoshiyuki Yamamoto, Issei Satoh, Keisuke Tanizaki, Hideaki Nakahata, Naho Mizuhara, Michimasa Miyanaga
  • Publication number: 20110076453
    Abstract: Affords an AlxGa1-xN single crystal suitable as an electromagnetic wave transmission body, and an electromagnetic wave transmission body that includes the AlxGa1-xN single crystals. The AlxGa1-xN (0<x?1) single crystal (2) has a dielectric loss tangent of 5×10?3 or lower with a radio frequency signal of at least either 1 MHz or 1 GHz having been applied to the crystal at an atmospheric temperature of 25° C. An electromagnetic wave transmission body (4) includes the AlxGa1-xN single crystal, which has a major surface (2m), wherein the AlxGa1-xN single crystal (2) has a dielectric loss tangent of 5×10?3 or lower with an RF signal of at least either 1 MHz or 1 GHz having been applied thereto at an atmospheric temperature of 25° C.
    Type: Application
    Filed: May 25, 2009
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Satoshi Arakawa, Takashi Sakurada, Michimasa Miyanaga, Keisuke Tanizaki, Naho Mizuhara, Issei Satoh, Hideaki Nakahata
  • Publication number: 20110042684
    Abstract: Affords an AlN crystal growth method, and an AlN laminate, wherein AlN of favorable crystalline quality is grown. The AlN crystal growth method is provided with the following steps. To begin with, a source material (17) containing AlN is prepared. A heterosubstrate (11), having a major surface (11a), is prepared. The source material (17) is sublimed to grow AlN crystal so as to cover the major surface (11a) of the heterosubstrate (11), whereby a first layer (12) with a flat face (12a) is formed. The source material (17) is sublimed to form onto the face (12a) of the first layer (12) a second layer (13) made of AlN. The second layer (13) is formed at a higher temperature than is the first layer (12).
    Type: Application
    Filed: April 14, 2009
    Publication date: February 24, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keisuke Tanizaki, Naho Mizuhara, Michimasa Miyanaga, Issei Satoh, Hideaki Nakahata, Yoshiyuki Yamamoto