Patents by Inventor Narasimhan Sundaram

Narasimhan Sundaram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10363516
    Abstract: In various aspects, apparatuses and methods are provided for low pressure drop gas separations. In PSA processes, where there are large swings in pressure and corresponding swings in fluid velocity through the adsorbent, mechanical stresses during pressure cycling are of considerable concern. When that pressure is relieved in a lower pressure portion of the cycle, the high velocity of gas moving through the adsorbent bed can erode, strip away, or otherwise damage the channels within the adsorbent. Provided herein are methods which utilize flexible boundaries between adsorbent beds that are operated out of phase with one another. The flexible boundaries permit an increase in void space through the adsorbent during high pressure stages of the cycle and a decrease in void space through the adsorbent during low pressure stages of the cycle.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: July 30, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Narasimhan Sundaram
  • Patent number: 10350537
    Abstract: Methods are provided for the production of nitrogen, hydrogen, and carbon dioxide from an exhaust gas. Exhaust gas from combustion in a fuel rich (or reducing) atmosphere is primarily composed of CO2, CO, N2, H2O, and H2. CO may be converted to CO2 and H2 via the water gas shift reaction. Carbon dioxide may then be effectively separated from nitrogen and hydrogen to produce a carbon dioxide stream and a nitrogen/hydrogen stream. The nitrogen/hydrogen stream may then be effectively separated to produce a high purity nitrogen stream and a high purity hydrogen stream. The process may be done in any order, such as separating the nitrogen first or the carbon dioxide first.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: July 16, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann
  • Patent number: 10350538
    Abstract: In various aspects, methods are provided for hydrogen production while reducing and/or mitigating emissions during various refinery processes that produce syngas, such as power generation. Syngas can be effectively separated to generate high purity carbon dioxide and hydrogen streams, while reducing and/or minimizing the energy required for the separation, and without needing to reduce the temperature of the flue gas. In various aspects, the operating conditions, such as high temperature, mixed metal oxide adsorbents, and cycle variations, for a pressure swing adsorption reactor can be selected to minimize energy penalties while still effectively capturing the CO2 present in syngas.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: July 16, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann, David C. Calabro, Frank Mittricker
  • Patent number: 10143960
    Abstract: A staged complementary pressure swing adsorption system and method for low energy fractionation of a mixed fluid. Two beds in a four-column PSA system are selective for component A, and another two columns are selective for component B. The cycle creates an intermittent A and B product, using the purge effluent from the complementary product fed at an intermediate pressure. This intermittent product is used as purge gas for low-pressure purged elsewhere in the cycle using appropriate storage tanks. The use of an intermediate pressure in this cycle enables continuous production of purified component A and B without the use of compressors. Columns may also be configured to enable pressure to equalize between complementary columns.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: December 4, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann, Edward W. Corcoran, Jr.
  • Patent number: 10125641
    Abstract: Systems and methods are provided for combined cycle power generation and enhanced hydrocarbon production where emission gases during power generation are separated by adsorption and applied to facilitate extraction of hydrocarbons from a reservoir. A power generation plant passes exhaust gas to a first swing adsorption reactor. The first swing adsorption reactor adsorbs the CO2 from the exhaust gas. An adsorption cycle of the first swing adsorption reactor is variable. An injection well injects the CO2 adsorbed by the first swing adsorption reactor in a hydrocarbon reservoir. A production well that is in communication with the injection well produces a mixture of hydrocarbons and CO2. A second swing adsorption reactor purifies the produced hydrocarbons by adsorbing the produced CO2 from the production well.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: November 13, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann, Franklin F. Mittricker, Loren Starcher
  • Patent number: 10071337
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a staged complementary swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: September 11, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann, Edward W. Corcoran, Jr.
  • Patent number: 10071338
    Abstract: Systems and methods for using pressure swing adsorption to separate and/or capture resulting emissions are provided. A stream of recycled exhaust gas is passed into a first swing adsorption reactor comprising a first adsorbent material which adsorbs CO2. An enriched N2 stream is recovered from a forward end of the first swing adsorption reactor. The pressure in the first swing adsorption reactor is reduced. The first swing adsorption reactor is purged with a portion of the first N2 stream recovered from the first swing adsorption reactor. The first purge output is passed to a second swing adsorption reactor comprising a second adsorbent material which adsorbs CO2. A second N2 stream is recovered from the second swing adsorption reactor. The pressure in the second swing adsorption reactor is reduced. The second swing adsorption reactor is purged with a steam purge.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: September 11, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann, Franklin F. Mittricker, Loren Starcher
  • Publication number: 20180229177
    Abstract: Systems and processes for use of concentric adsorbent beds with rotary valve assemblies are provided.
    Type: Application
    Filed: January 23, 2018
    Publication date: August 16, 2018
    Inventor: Narasimhan SUNDARAM
  • Patent number: 10029205
    Abstract: In various aspects, apparatuses, systems, and methods are provided for performing two stage separation of CO2 from a gaseous stream. The first stage adsorbent can be comprised of a plurality of cylindrical or substantially cylindrical rings. The first stage adsorbent can be comprised of a metal organic framework. The second stage adsorbent can be subject to a displacement desorption process. The second stage adsorbent can be comprised of a support and a metal compound selected from the group consisting of alkali or alkaline earth. The first and second stage adsorbent can be arranged concentrically for space and efficiency considerations.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: July 24, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann
  • Patent number: 10016716
    Abstract: Systems and methods are provided for performing a swing adsorption process, such as a temperature swing adsorption process. During portions of a swing cycle where one or more components are being desorbed, a vibration or other perturbation can be induced in the adsorbent and/or in the adsorbent structure to assist with desorption. Inducing a vibration or other perturbation in the adsorbent structure can provide a way to introduce additional energy into the adsorbent system without having to increase the temperature of the adsorbent structure.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: July 10, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann
  • Publication number: 20180036670
    Abstract: Methods are provided for the production of nitrogen, hydrogen, and carbon dioxide from an exhaust gas. Exhaust gas from combustion in a fuel rich (or reducing) atmosphere is primarily composed of CO2, CO, N2, H2O, and H2. CO may be converted to CO2 and H2 via the water gas shift reaction. Carbon dioxide may then be effectively separated from nitrogen and hydrogen to produce a carbon dioxide stream and a nitrogen/hydrogen stream. The nitrogen/hydrogen stream may then be effectively separated to produce a high purity nitrogen stream and a high purity hydrogen stream. The process may be done in any order, such as separating the nitrogen first or the carbon dioxide first.
    Type: Application
    Filed: July 19, 2017
    Publication date: February 8, 2018
    Inventors: Narasimhan SUNDARAM, Hans THOMANN
  • Publication number: 20180036674
    Abstract: In various aspects, methods are provided for hydrogen production while reducing and/or mitigating emissions during various refinery processes that produce syngas, such as power generation. Syngas can be effectively separated to generate high purity carbon dioxide and hydrogen streams, while reducing and/or minimizing the energy required for the separation, and without needing to reduce the temperature of the flue gas. In various aspects, the operating conditions, such as high temperature, mixed metal oxide adsorbents, and cycle variations, for a pressure swing adsorption reactor can be selected to minimize energy penalties while still effectively capturing the CO2 present in syngas.
    Type: Application
    Filed: July 19, 2017
    Publication date: February 8, 2018
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, David C. CALABRO, Frank MITTRICKER
  • Publication number: 20180036672
    Abstract: An adsorption module and associated processes for conducting advanced separations processes such as sorption enhanced water-gas shift (SEWGS). The adsorption module contains at least one angled baffle to create at least two tapered adsorbent beds within the adsorption module. The taper is such that the adsorbent beds' cross-sections within the adsorption module decrease in the direction of feed flow, thereby taking advantage of increased product purity and process efficiency provided by tapered adsorption beds.
    Type: Application
    Filed: July 19, 2017
    Publication date: February 8, 2018
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, David C. CALABRO, Frank MITTRICKER
  • Publication number: 20180036673
    Abstract: In various aspects, apparatuses and methods are provided for low pressure drop gas separations. In PSA processes, where there are large swings in pressure and corresponding swings in fluid velocity through the adsorbent, mechanical stresses during pressure cycling are of considerable concern. When that pressure is relieved in a lower pressure portion of the cycle, the high velocity of gas moving through the adsorbent bed can erode, strip away, or otherwise damage the channels within the adsorbent. Provided herein are methods which utilize flexible boundaries between adsorbent beds that are operated out of phase with one another. The flexible boundaries permit an increase in void space through the adsorbent during high pressure stages of the cycle and a decrease in void space through the adsorbent during low pressure stages of the cycle.
    Type: Application
    Filed: July 19, 2017
    Publication date: February 8, 2018
    Inventor: Narasimhan SUNDARAM
  • Publication number: 20180036688
    Abstract: Gas separation modules and methods for use including an integrated adsorbent and membrane. In certain refining applications, it is paramount to obtain high purity product gases. Adsorbent beds are effective at removing certain contaminants, such as CO2, from gas streams containing product and contaminant constituents to form a product-rich stream. The integrated membrane permits a further separation of products from any unadsorbed contaminant to produce a high purity product, such as hydrogen, stream. The gas separation modules described herein include stacked, radial, and spiral arrangements. Each modules includes a configuration of feed and cross-flow channels for the collection of contaminant gases and/or high purity product gases.
    Type: Application
    Filed: July 19, 2017
    Publication date: February 8, 2018
    Inventors: Narasimhan SUNDARAM, David C. CALABRO, Hans THOMANN, Randall D. PARTRIDGE
  • Publication number: 20170138236
    Abstract: A method for capturing emissions from a fuel combustion process comprising: providing a fuel to a combustor on a gas turbine, providing an oxidant to the combustor, combusting the fuel and the oxidant in the combustor to produce an exhaust gas, passing at least a portion of the exhaust gas to one or more catalyst beds. The one or more catalyst beds promote a reaction which consumes CO and produces CO2 and adsorb CO2. Pressure at the catalyst beds is reduced by outputting a blow down stream from the catalyst beds and then CO2 is purged from the one or more catalyst beds with a regenerant stream to create a product stream.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Franklin F. MITTRICKER
  • Publication number: 20170136402
    Abstract: A staged complementary pressure swing adsorption system and method for low energy fractionation of a mixed fluid. Two beds in a four-column PSA system are selective for component A, and another two columns are selective for component B. The cycle creates an intermittent A and B product, using the purge effluent from the complementary product fed at an intermediate pressure. This intermittent product is used as purge gas for low-pressure purged elsewhere in the cycle using appropriate storage tanks. The use of an intermediate pressure in this cycle enables continuous production of purified component A and B without the use of compressors. Columns may also be configured to enable pressure to equalize between complementary columns.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Edward W. CORCORAN, JR.
  • Publication number: 20170141421
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a molten carbonate fuel cell power generation reaction can be separated by using a swing adsorption process so as to generate a high purity CO2 stream while reducing or minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. A high temperature adsorption reactor adsorbs the CO2 and recovers H2 from an exhaust gas of a first molten carbonate fuel cell at a high temperature and at a low pressure. The reactor passes along the adsorbed CO2 to a cathode and the recovered H2 to an anode of a second molten carbonate fuel cell for further power generation. This can allow for improved energy recovery while also generating high purity streams of CO2 and H2.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Franklin F. MITTRICKER, Loren STARCHER
  • Publication number: 20170136400
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a staged complementary swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Edward W. CORCORAN, JR.
  • Publication number: 20170138222
    Abstract: Systems and methods are provided for combined cycle power generation and enhanced hydrocarbon production where emission gases during power generation are separated by adsorption and applied to facilitate extraction of hydrocarbons from a reservoir. A power generation plant passes exhaust gas to a first swing adsorption reactor. The first swing adsorption reactor adsorbs the CO2 from the exhaust gas. An adsorption cycle of the first swing adsorption reactor is variable. An injection well injects the CO2 adsorbed by the first swing adsorption reactor in a hydrocarbon reservoir. A production well that is in communication with the injection well produces a mixture of hydrocarbons and CO2. A second swing adsorption reactor purifies the produced hydrocarbons by adsorbing the produced CO2 from the production well. The purified hydrocarbons are fed back to the power generation plant where combustion occurs and power is generated.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Franklin F. MITTRICKER, Loren STARCHER