Patents by Inventor Niraj Ranjan

Niraj Ranjan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9245985
    Abstract: There are disclosed herein various implementations of an insulated gate bipolar transistor (IGBT) with buried emitter electrodes. Such an IGBT may include a collector at a bottom surface of a semiconductor substrate, a drift region having a first conductivity type situated over the collector, and a base layer having a second conductivity type opposite the first conductivity type situated over the drift region. In addition, such an IGBT may include deep insulated trenches extending from a semiconductor surface above the base layer, into the drift region, each of the deep insulated trenches having a buried emitter electrode disposed therein. The IGBT may further include an active cell including an emitter, a gate trench with a gate electrode disposed therein, and an implant zone situated, between adjacent deep insulated trenches. The implant zone is formed below the base layer and has the first conductivity type.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 26, 2016
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Yi Tang, Niraj Ranjan, Chiu Ng
  • Patent number: 8988128
    Abstract: According to an exemplary implementation, a level shifter includes a low voltage circuit and a high voltage circuit. The low voltage circuit is configured to provide a differential signal to the high voltage circuit. The high voltage circuit is configured to receive the differential signal from the low voltage circuit so as to level shift the differential signal from a first ground of the low voltage circuit to a second ground of the high voltage circuit. The differential signal is provided by the low voltage circuit responsive to a feedback signal from the high voltage circuit. The feedback signal can indicate common mode noise in the level shifter. Furthermore, the low voltage circuit can be configured to refresh the differential signal responsive to the feedback signal.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 24, 2015
    Assignee: International Rectifier Corporation
    Inventors: Min Fang, Massimo Grasso, Niraj Ranjan
  • Publication number: 20150054564
    Abstract: According to an exemplary implementation, a level shifter includes a low voltage circuit and a high voltage circuit. The low voltage circuit is configured to provide a differential signal to the high voltage circuit through a capacitive isolation barrier. The high voltage circuit is configured to receive the differential signal from the low voltage circuit through the capacitive isolation barrier so as to level shift the differential signal from a first ground of the low voltage circuit to a second ground of the high voltage circuit. The high voltage circuit is further configured to provide a feedback signal to the low voltage circuit through the capacitive isolation barrier. The low voltage circuit can be configured to receive the feedback signal from the low voltage circuit between edges of the differential signal.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Min Fang, Massimo Grasso, Niraj Ranjan
  • Publication number: 20140374825
    Abstract: Disclosed is a power semiconductor device that includes a plurality of source trenches and adjacent source regions. The plurality of source trenches extend from a top surface of a semiconductor substrate into the semiconductor substrate. The power semiconductor device further includes a plurality of gate trenches that extend from the top of the semiconductor substrate into the semiconductor substrate, and are arranged in hexagonal or zigzag patterns. A contiguous formation is created by the plurality of gate trenches, and the plurality of gate trenches separate the plurality of source trenches from one another.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 25, 2014
    Inventors: Kapil Kelkar, Timothy D. Henson, Ling Ma, Hugo Burke, Niraj Ranjan, Alain Charles
  • Patent number: 8878591
    Abstract: According to an exemplary implementation, a level shifter includes a low voltage circuit and a high voltage circuit. The low voltage circuit is configured to provide a differential signal to the high voltage circuit through a capacitive isolation barrier. The high voltage circuit is configured to receive the differential signal from the low voltage circuit through the capacitive isolation barrier so as to level shift the differential signal from a first ground of the low voltage circuit to a second ground of the high voltage circuit. The high voltage circuit is further configured to provide a feedback signal to the low voltage circuit through the capacitive isolation barrier. The low voltage circuit can be configured to receive the feedback signal from the low voltage circuit between edges of the differential signal.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: November 4, 2014
    Assignee: International Rectifier Corporation
    Inventors: Min Fang, Massimo Grasso, Niraj Ranjan
  • Patent number: 8860194
    Abstract: One exemplary disclosed embodiment comprises a semiconductor package including a vertical conduction control transistor and a vertical conduction sync transistor. The vertical conduction control transistor may include a control source, a control gate, and a control drain that are all accessible from a bottom surface, thereby enabling electrical and direct surface mounting to a support surface. The vertical conduction sync transistor may include a sync drain on a top surface, which may be connected to a conductive clip that is coupled to the support surface. The conductive clip may also be thermally coupled to the control transistor. Accordingly, all terminals of the transistors are readily accessible through the support surface, and a power circuit, such as a buck converter power phase, may be implemented through traces of the support surface. Optionally, a driver IC may be integrated into the package, and a heatsink may be attached to the conductive clip.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: October 14, 2014
    Assignee: International Rectifier Corporation
    Inventors: Ling Ma, Andrew N. Sawle, David Paul Jones, Timothy D. Henson, Niraj Ranjan, Vijay Viswanathan, Omar Hassen
  • Publication number: 20140118032
    Abstract: One exemplary disclosed embodiment comprises a semiconductor package including a vertical conduction control transistor and a vertical conduction sync transistor. The vertical conduction control transistor may include a control source, a control gate, and a control drain that are all accessible from a bottom surface, thereby enabling electrical and direct surface mounting to a support surface. The vertical conduction sync transistor may include a sync drain on a top surface, which may be connected to a conductive clip that is coupled to the support surface. The conductive clip may also be thermally coupled to the control transistor. Accordingly, all terminals of the transistors are readily accessible through the support surface, and a power circuit, such as a buck converter power phase, may be implemented through traces of the support surface. Optionally, a driver IC may be integrated into the package, and a heatsink may be attached to the conductive clip.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventors: Ling Ma, Andrew N. Sawle, David Paul Jones, Timothy D. Henson, Niraj Ranjan, Vijay Viswanathan, Omar Hassen
  • Publication number: 20140028371
    Abstract: According to an exemplary implementation, a level shifter includes a low voltage circuit and a high voltage circuit. The low voltage circuit is configured to provide a differential signal to the high voltage circuit. The high voltage circuit is configured to receive the differential signal from the low voltage circuit so as to level shift the differential signal from a first ground of the low voltage circuit to a second ground of the high voltage circuit. The differential signal is provided by the low voltage circuit responsive to a feedback signal from the high voltage circuit. The feedback signal can indicate common mode noise in the level shifter. Furthermore, the low voltage circuit can be configured to refresh the differential signal responsive to the feedback signal.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 30, 2014
    Inventors: Min Fang, Massimo Grasso, Niraj Ranjan
  • Publication number: 20140028369
    Abstract: According to an exemplary implementation, a level shifter includes a low voltage circuit and a high voltage circuit. The low voltage circuit is configured to provide a differential signal to the high voltage circuit through a capacitive isolation barrier. The high voltage circuit is configured to receive the differential signal from the low voltage circuit through the capacitive isolation barrier so as to level shift the differential signal from a first ground of the low voltage circuit to a second ground of the high voltage circuit. The high voltage circuit is further configured to provide a feedback signal to the low voltage circuit through the capacitive isolation barrier. The low voltage circuit can be configured to receive the feedback signal from the low voltage circuit between edges of the differential signal.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 30, 2014
    Inventors: Min Fang, Massimo Grasso, Niraj Ranjan
  • Publication number: 20130264636
    Abstract: According to an exemplary implementation, a field-effect transistor (FET) includes first and second gate trenches extending to a drift region of a first conductivity type. The FET also includes a base region of a second conductivity type that is situated between the first and second gate trenches. A ruggedness enhancement region is situated between the first and second gate trenches, where the ruggedness enhancement region is configured to provide an enhanced avalanche current path from a drain region to the base region when the FET is in an avalanche condition. The enhanced avalanche current path is away from the first and second gate trenches. The ruggedness enhancement region can be of the second conductivity type that includes a higher dopant concentration than the base region. Furthermore, the ruggedness enhancement region can be extending below the first and second gate trenches.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 10, 2013
    Applicant: International Rectifier Corporation
    Inventors: Ashita Mirchandani, Timothy D. Henson, Ling Ma, Niraj Ranjan
  • Publication number: 20130256744
    Abstract: There are disclosed herein various implementations of an insulated gate bipolar transistor (IGBT) with buried emitter electrodes. Such an IGBT may include a collector at a bottom surface of a semiconductor substrate, a drift region having a first conductivity type situated over the collector, and a base layer having a second conductivity type opposite the first conductivity type situated over the drift region. In addition, such an IGBT may include deep insulated trenches extending from a semiconductor surface above the base layer, into the drift region, each of the deep insulated trenches having a buried emitter electrode disposed therein. The IGBT may further include an active cell including an emitter, a gate trench with a gate electrode disposed therein, and an implant zone situated, between adjacent deep insulated trenches. The implant zone is formed below the base layer and has the first conductivity type.
    Type: Application
    Filed: March 8, 2013
    Publication date: October 3, 2013
    Applicant: International Rectifier Corporation
    Inventors: Yi Tang, Niraj Ranjan, Chiu Ng
  • Publication number: 20130256745
    Abstract: There are disclosed herein various implementations of an insulated-gate bipolar transistor (IGBT) with buried depletion electrode. Such an IGBT may include a collector at a bottom surface of a semiconductor substrate, a drift region having a first conductivity type situated over the collector, and a base layer having a second conductivity type opposite the first conductivity type situated over the drift region. The IGBT also includes a plurality of deep insulated trenches with a buried depletion electrode and at least one gate electrode disposed therein. In addition, the IGBT includes an active cell including an emitter adjacent the gate electrode, and an implant zone, situated between adjacent deep insulated trenches. The implant zone is formed below the base layer and has the first conductivity type. In one implementation, the IGBT may also include a dummy cell neighboring the active cell.
    Type: Application
    Filed: March 8, 2013
    Publication date: October 3, 2013
    Applicant: International Rectifier Corporation
    Inventors: Yi Tang, Niraj Ranjan, Chiu Ng
  • Patent number: 8076672
    Abstract: A semiconductor device which includes a passivation structure formed with a conductive strip of resistive material that crosses itself once around the active region of the device to form a first closed loop, a continuous strip that loops around the first closed loop without crossing itself which crosses itself a second time to form a second closed loop.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: December 13, 2011
    Assignee: International Rectifier Corporation
    Inventor: Niraj Ranjan
  • Publication number: 20110284950
    Abstract: Disclosed is a method for fabricating a shallow and narrow trench field-effect transistor (trench FET). The method includes forming a trench within a semiconductor substrate of a first conductivity type, the trench including sidewalls and a bottom portion. The method further includes forming a substantially uniform gate dielectric in the trench, and forming a gate electrode within said trench and over said gate dielectric. The method also includes doping the semiconductor substrate to form a channel region of a second conductivity type after forming the trench. In one embodiment, the doping step is performed after forming the gate dielectric and after forming the gate electrode. In another embodiment, the doping step is performed after forming the gate dielectric, but prior to forming the gate electrode. Structures formed by the invention's method are also disclosed.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 24, 2011
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventors: Timothy D. Henson, Ling Ma, Hugo Burke, David P. Jones, Kapil Kelkar, Niraj Ranjan
  • Publication number: 20070120224
    Abstract: A semiconductor device which includes a passivation structure formed with a conductive strip of resistive material that crosses itself once around the active region of the device to form a first closed loop, a continuous strip that loops around the first closed loop without crossing itself which crosses itself a second time to form a second closed loop.
    Type: Application
    Filed: December 28, 2006
    Publication date: May 31, 2007
    Inventor: Niraj Ranjan
  • Patent number: 7183626
    Abstract: A semiconductor device which includes a passivation structure formed with a conductive strip of resistive material that crosses itself once around the active region of the device to form a first closed loop, a continuous strip that loops around the first closed loop without crossing itself which crosses itself a second time to form a second closed loop.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: February 27, 2007
    Assignee: International Rectifier Corporation
    Inventor: Niraj Ranjan
  • Publication number: 20060102984
    Abstract: A semiconductor device which includes a passivation structure formed with a conductive strip of resistive material that crosses itself once around the active region of the device to form a first closed loop, a continuous strip that loops around the first closed loop without crossing itself which crosses itself a second time to form a second closed loop.
    Type: Application
    Filed: November 17, 2004
    Publication date: May 18, 2006
    Inventor: Niraj Ranjan
  • Patent number: 6707101
    Abstract: A high side driver chip for MOSgated devices which controls a non resistive, or non inductive load has a vertical conduction refresh MOSFET integrated into the chip for connecting a Vs node to ground to discharge the load capacitance. A Schottky diode is also integrated with the refresh MOSFET to prevent forward conduction of a parasitic diode of the vertical conduction MOSFET.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: March 16, 2004
    Assignee: International Rectifier Corporation
    Inventor: Niraj Ranjan
  • Publication number: 20030102886
    Abstract: A high side driver chip for MOSgated devices which controls a non resistive, or non inductive load has a vertical conduction refresh MOSFET integrated into the chip for connecting a Vs node to ground to discharge the load capacitance. A Schottky diode is also integrated with the refresh MOSFET to prevent forward conduction of a parasitic diode of the vertical conduction MOSFET.
    Type: Application
    Filed: January 6, 2003
    Publication date: June 5, 2003
    Applicant: International Rectifier Corporation
    Inventor: Niraj Ranjan
  • Patent number: 6529034
    Abstract: A high side driver chip for MOSgated devices which controls a non resistive, or non inductive load has a vertical conduction refresh MOSFET integrated into the chip for connecting a Vs node to ground to discharge the load capacitance. A Schottky diode is also integrated with the refresh MOSFET to prevent forward conduction of a parasitic diode of the vertical conduction MOSFET.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: March 4, 2003
    Assignee: International Rectifier Corporation
    Inventor: Niraj Ranjan