Patents by Inventor Norikazu Ohshima

Norikazu Ohshima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8379429
    Abstract: A domain wall motion element has a magnetic recording layer 10 that is formed of a ferromagnetic film and has a domain wall DW. The magnetic recording layer 10 has: a pair of end regions 11-1 and 11-2 whose magnetization directions are fixed; and a center region 12 sandwiched between the pair of end regions 11-1 and 11-2, in which the domain wall. DW moves. A first trapping site TS1 by which the domain wall DW is trapped is formed at a boundary between the end region 11-1, 11-2 and the center region 12. Furthermore, at least one second trapping site TS2 by which the domain wall DW is trapped is formed within the center region 12.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: February 19, 2013
    Assignee: NEC Corporation
    Inventors: Nobuyuki Ishiwata, Tetsuhiro Suzuki, Norikazu Ohshima, Kiyokazu Nagahara, Shunsuke Fukami
  • Patent number: 8363461
    Abstract: A magnetic memory includes a magnetization recording layer, a first terminal, a second terminal, a magnetization pinned layer and a non-magnetic layer. The magnetization recording layer has a vertical magnetic anisotropy and includes a ferromagnetic layer. The first terminal is connected to one end of a first region in the magnetization recording layer. The second terminal is connected to the other end of the first region. The non-magnetic layer is arranged on the first region. The magnetization pinned layer is arranged on the non-magnetic layer and is located on the side opposite to the first region. The magnetization recording layer includes: a first extension portion located outside the first terminal in the magnetization recording layer; and a property changing structure that is arranged in the first extension portion and substantially changes a magnetization switching property of the magnetization recording layer.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 29, 2013
    Assignee: NEC Corporation
    Inventors: Tetsuhiro Suzuki, Shunsuke Fukami, Kiyokazu Nagahara, Norikazu Ohshima, Nobuyuki Ishiwata
  • Patent number: 8351249
    Abstract: A magnetic random access memory according to the present invention is provided with: a magnetic recording layer including a magnetization free region having a reversible magnetization, wherein a write current is flown through the magnetic recording layer in an in-plane direction; a magnetization fixed layer having a fixed magnetization; a non-magnetic layer provided between the magnetization free region and the magnetization fixed layer; and a heat sink structure provided to be opposed to the magnetic recording layer and having a function of receiving and radiating heat generated in the magnetic recording layer. The magnetic random access memory thus-structured radiates heat generated in the magnetic recording layer by using the heat sink structure, suppressing the temperature increase caused by the write current flown in the in-plane direction.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: January 8, 2013
    Assignee: NEC Corporation
    Inventors: Nobuyuki Ishiwata, Hideaki Numata, Norikazu Ohshima
  • Publication number: 20120326254
    Abstract: A magnetic random access memory according to the present invention is provided with: a magnetic recording layer including a magnetization free region having a reversible magnetization, wherein a write current is flown through the magnetic recording layer in an in-plane direction; a magnetization fixed layer having a fixed magnetization; a non-magnetic layer provided between the magnetization free region and the magnetization fixed layer; and a heat sink structure provided to be opposed to the magnetic recording layer and having a function of receiving and radiating heat generated in the magnetic recording layer. The magnetic random access memory thus-structured radiates heat generated in the magnetic recording layer by using the heat sink structure, suppressing the temperature increase caused by the write current flown in the in-plane direction.
    Type: Application
    Filed: September 7, 2012
    Publication date: December 27, 2012
    Applicant: NEC CORPORATION
    Inventors: Nobuyuki ISHIWATA, Hideaki NUMATA, Norikazu OHSHIMA
  • Publication number: 20120320667
    Abstract: A magnetic random access memory according to the present invention is provided with: a magnetic recording layer including a magnetization free region having a reversible magnetization, wherein a write current is flown through the magnetic recording layer in an in-plane direction; a magnetization fixed layer having a fixed magnetization; a non-magnetic layer provided between the magnetization free region and the magnetization fixed layer; and a heat sink structure provided to be opposed to the magnetic recording layer and having a function of receiving and radiating heat generated in the magnetic recording layer. The magnetic random access memory thus-structured radiates heat generated in the magnetic recording layer by using the heat sink structure, suppressing the temperature increase caused by the write current flown in the in-plane direction.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 20, 2012
    Applicant: NEC CORPORATION
    Inventors: Nobuyuki ISHIWATA, Hideaki NUMATA, Norikazu OHSHIMA
  • Patent number: 8315087
    Abstract: An MRAM according to the present invention has a magnetoresistance element 1. The magnetoresistance element 1 has: a first magnetic layer 10 including a first region 11 whose magnetization direction is reversible; a second magnetic layer 30 whose magnetization direction is fixed parallel to a magnetization easy axis direction of the first region 11; and a non-magnetic layer 20 sandwiched between the first magnetic layer 10 and the second magnetic layer 30. A domain wall DW is formed at least one end of the first region 11 of the first magnetic layer 10. The second magnetic layer 30 is formed to overlap with the first region and the above-mentioned one end. At a time of data writing, a write current is applied between the first magnetic layer 10 and the second magnetic layer 30.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: November 20, 2012
    Assignee: NEC Corporation
    Inventors: Yuukou Katou, Norikazu Ohshima
  • Publication number: 20120278582
    Abstract: A magnetic memory element includes: a first magnetization free layer; a non-magnetic layer; a reference layer; a first magnetization fixed layer group; and a first blocking layer. The first magnetization free layer is composed of ferromagnetic material with perpendicular magnetic anisotropy and includes a first magnetization fixed region, a second magnetization fixed region and a magnetization free region. The non-magnetic layer is provided near the first magnetization free layer. The reference layer is composed of ferromagnetic material and provided on the non-magnetic layer. The first magnetization fixed layer group is provided near the first magnetization fixed region. The first blocking layer is provided being sandwiched between the first magnetization fixed layer group and the first magnetization fixed region or in the first magnetization fixed layer group.
    Type: Application
    Filed: October 21, 2010
    Publication date: November 1, 2012
    Applicant: NEC CORPORATION
    Inventors: Shunsuke Fukami, Tetsuhiro Suzuki, Kiyokazu Nagahara, Norikazu Ohshima, Nobuyuki Ishiwata
  • Patent number: 8300456
    Abstract: An MRAM has a pinned layer and a magnetic recording layer connected to the pinned layer through a tunnel barrier layer. The magnetic recording layer has a first free layer, a second free layer being in contact with the tunnel barrier layer, and an intermediate layer provided between the first free layer and the second free layer. The first free layer includes a magnetization switching region whose magnetization direction can be switched by domain wall motion method. The second free layer has no domain wall. The intermediate layer is formed to cover at least the magnetization switching region. The magnetization switching region and the second free layer are magnetically coupled to each other through the intermediate layer.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: October 30, 2012
    Assignee: NEC Corporation
    Inventors: Hiroaki Honjou, Tetsuhiro Suzuki, Norikazu Ohshima
  • Publication number: 20120206959
    Abstract: A magnetic memory cell 1 is provided with a magnetic recording layer 10 which is a ferromagnetic layer and a pinned layer 30 connected with the magnetic recording layer 10 through a non-magnetic layer 20. The magnetic recording layer 10 has a magnetization inversion region 13, a first magnetization fixed region 11 and a second magnetization fixed region 12. The magnetization inversion region 13 has a magnetization whose orientation is invertible and overlaps the pinned layer 30. The first magnetization fixed region 11 is connected with a first boundary B1 in the magnetization inversion region 13 and a magnetization orientation is fixed on a first direction. The second magnetization fixed region 12 is connected with a second boundary B2 in magnetization inversion region 13 and a magnetization orientation is fixed on a second direction. The first direction and the second direction are opposite to each other.
    Type: Application
    Filed: March 29, 2012
    Publication date: August 16, 2012
    Inventors: TAKESHI HONDA, NOBORU SAKIMURA, TADAHIKO SUGIBAYASHI, HIDEAKI NUMATA, NORIKAZU OHSHIMA
  • Publication number: 20120199470
    Abstract: A method for manufacturing an MTJ film includes forming a first ferromagnetic layer; forming a tunnel barrier layer over the first ferromagnetic layer; and forming a second ferromagnetic layer over the tunnel barrier layer. The first ferromagnetic layer is a Co/Ni stacked film having perpendicular magnetic anisotropy. The step for forming a tunnel barrier layer includes repeating unit film formation treatment n times (n is an integer of 2 or more). The unit film formation treatment includes the steps of: depositing an Mg film by a sputtering method; and oxidizing the deposited Mg film. A film thickness of the deposited Mg film in the first unit film formation treatment is 0.3 nm or more and 0.5 nm or less. A film thickness of the deposited Mg film in the second unit film formation treatment or later is 0.1 nm or more and 0.45 nm or less.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 9, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Kaoru MORI, Eiji KARIYADA, Katsumi SUEMITSU, Norikazu OHSHIMA
  • Patent number: 8238135
    Abstract: A magnetic recording layer 10 of an MRAM has a first magnetization fixed region 11, a second magnetization fixed region 12 and a magnetization switching region 13. The magnetization switching region 13 has reversible magnetization and overlaps with a pinned layer. The first magnetization fixed region 11 is connected to a first boundary B1 of the magnetization switching region 13 and its magnetization direction is fixed to a first direction. The second magnetization fixed region 12 is connected to a second boundary B2 of the magnetization switching region 13 and its magnetization direction is fixed to a second direction. Both of the first direction and the second direction are toward the magnetization switching region 13 or away from the magnetization switching region 13. The damping coefficient ? in at least a portion R1, R2 of the magnetization fixed regions 11 and 12 is larger than the damping coefficient ? in the magnetization switching region 13.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: August 7, 2012
    Assignee: NEC Corporation
    Inventors: Tetsuhiro Suzuki, Norikazu Ohshima, Hideaki Numata
  • Patent number: 8194436
    Abstract: A magnetic random access memory includes: a first ferromagnetic layer; an insulating layer provided adjacent to the first ferromagnetic layer; and a first magnetization pinned layer provided adjacent to the insulating layer on a side opposite to the first ferromagnetic layer. The first ferromagnetic layer includes a magnetization free region, a first magnetization pinned region, and a second magnetization pinned region. The magnetization free region has reversible magnetization, and overlaps with the second ferromagnetic layer. The first magnetization pinned region has first pinned magnetization, and is connected to a part of the magnetization free region. The second magnetization pinned region has second pinned magnetization, and is connected to a part of the magnetization free region. The first ferromagnetic layer has magnetic anisotropy in a direction perpendicular to a film surface.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: June 5, 2012
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Tetsuhiro Suzuki, Kiyokazu Nagahara, Norikazu Ohshima, Nobuyuki Ishiwata
  • Publication number: 20120135275
    Abstract: A magnetic memory includes: a magnetization fixed layer having perpendicular magnetic anisotropy, a magnetization direction of the magnetization fixed layer being fixed; an interlayer dielectric; an underlayer formed on upper faces of the magnetization fixed layer and the interlayer dielectric; and a data recording layer formed on an upper face of the underlayer and having perpendicular magnetic anisotropy. The underlayer includes: a first magnetic underlayer; and a non-magnetic underlayer formed on the first magnetic underlayer. The first magnetic underlayer is formed with such a thickness that the first magnetic underlayer does not exhibit in-plane magnetic anisotropy in a portion of the first magnetic underlayer formed on the interlayer dielectric.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 31, 2012
    Applicant: Renesas Electronics Corporation
    Inventors: Eiji Kariyada, Katsumi Suemitsu, Hironobu Tanigawa, Kaoru Mori, Tetsuhiro Suzuki, Kiyokazu Nagahara, Yasuaki Ozaki, Norikazu Ohshima
  • Patent number: 8174873
    Abstract: A domain wall motion type MRAM has: a magnetic recording layer 10 having perpendicular magnetic anisotropy; and a pair of terminals 51 and 52 used for supplying a current to the magnetic recording layer 10. The magnetic recording layer 10 has: a first magnetization region 11 connected to one of the pair of terminals; a second magnetization region 12 connected to the other of the pair of terminals; and a magnetization switching region 13 connecting between the first magnetization region 11 and the second magnetization region 12 and having reversible magnetization. A first pinning site PS1, by which the domain wall is trapped, is formed at a boundary between the first magnetization region 11 and the magnetization switching region 13. A second pinning site PS2, by which the domain wall is trapped, is formed at a boundary between the second magnetization region 12 and the magnetization switching region 13.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 8, 2012
    Assignee: NEC Corporation
    Inventors: Tetsuhiro Suzuki, Shunsuke Fukami, Norikazu Ohshima, Kiyokazu Nagahara, Nobuyuki Ishiwata
  • Patent number: 8174086
    Abstract: A magnetoresistive element is provided with a first magnetization free layer; a second magnetization free layer; a non-magnetic layer disposed adjacent to the second magnetization free layer; and a first magnetization fixed layer disposed adjacent to the second magnetization free layer on an opposite side of the second magnetization free layer. The first magnetization free layer is formed of ferromagnetic material and has a magnetic anisotropy in a thickness direction. On the other hand, the second magnetization free layer and the first magnetization fixed layer are formed of ferromagnetic material and have a magnetic anisotropy in an in-plane direction. The first magnetization free layer includes: a first magnetization fixed region having a fixed magnetization; a second magnetization fixed region having a fixed magnetization; and a magnetization free region connected to the first and second magnetization fixed regions and having a reversible magnetization.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: May 8, 2012
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Nobuyuki Ishiwata, Tetsuhiro Suzuki, Kiyokazu Nagahara, Norikazu Ohshima
  • Patent number: 8159872
    Abstract: An MRAM has: a memory cell including a first magnetoresistance element; and a reference cell including a second magnetoresistance element. The first magnetoresistance element has a first magnetization fixed layer, a first magnetization free layer, a first nonmagnetic layer sandwiched between the first magnetization fixed layer and the first magnetization free layer, a second magnetization fixed layer, a second magnetization free layer and a second nonmagnetic layer sandwiched between the second magnetization fixed layer and the second magnetization free layer. The first magnetization fixed layer and the first magnetization free layer have perpendicular magnetic anisotropy, and the second magnetization fixed layer and the second magnetization free layer have in-plane magnetic anisotropy. The first magnetization free layer and the second magnetization free layer are magnetically coupled to each other.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: April 17, 2012
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Nobuyuki Ishiwata, Tetsuhiro Suzuki, Norikazu Ohshima, Kiyokazu Nagahara
  • Patent number: 8154913
    Abstract: A magnetoresistance effect element comprising: a first magnetization fixed layer whose magnetization direction is fixed; a first magnetization free layer whose magnetization direction is variable; a first nonmagnetic layer sandwiched between the first magnetization fixed layer and the first magnetization free layer; a second magnetization fixed layer whose magnetization direction is fixed; a second magnetization free layer whose magnetization direction is variable; and a second nonmagnetic layer sandwiched between the second magnetization fixed layer and the second magnetization free layer. The first magnetization fixed layer and the first magnetization free layer have perpendicular magnetic anisotropy, while the second magnetization fixed layer and the second magnetization free layer have in-plane magnetic anisotropy. The first magnetization free layer and the second magnetization free layer are magnetically coupled to each other.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: April 10, 2012
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Nobuyuki Ishiwata, Tetsuhiro Suzuki, Norikazu Ohshima, Kiyokazu Nagahara
  • Patent number: 8149615
    Abstract: An MRAM has: a memory cell including a first magnetoresistance element; and a reference cell including a second magnetoresistance element. The first magnetoresistance element has a first magnetization free layer, a first magnetization fixed layer, a second magnetization free layer and a first nonmagnetic layer sandwiched between the first magnetization fixed layer and the second magnetization free layer. The first magnetization free layer has: first and second magnetization fixed regions; and a magnetization free region. The magnetization free region and the second magnetization free layer are magnetically coupled to each other.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: April 3, 2012
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Nobuyuki Ishiwata, Tetsuhiro Suzuki, Norikazu Ohshima, Kiyokazu Nagahara
  • Patent number: 8120950
    Abstract: A semiconductor device includes: a first magnetic random access memory including a first memory cell and a second magnetic random access memory including a second memory cell operating at higher speed than the first memory cell and is provided on the same chip together with the first magnetic random access memory. The first memory cell is a current-induced domain wall motion type MRAM and stores data based on a domain wall position of a magnetization free layer. A layer that a write current flows is different from a layer that a read current flows. The second memory cell is a current-induced magnetic field writing type MRAM and stores data based on a magnetic field induced by a write current.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: February 21, 2012
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Nobuyuki Ishiwata, Tetsuhiro Suzuki, Norikazu Ohshima, Kiyokazu Nagahara
  • Patent number: 8120127
    Abstract: A domain wall motion type MRAM 100 has: a magnetic recording layer 10 that is a ferromagnetic layer; and a magnetic coupling layer 20 that is a ferromagnetic layer whose magnetization direction is fixed. The magnetic recording layer 10 has: a first region 10-1; a second region 10-2; and a magnetization switching region 10-3 connecting between the first region 10-1 and the second region 10-2. The first region 10-1 is magnetically coupled to the magnetic coupling layer 20 and its magnetization direction is fixed in a first direction by the magnetic coupling layer 20. The second region 10-2 is not magnetically coupled to the magnetic coupling layer 20 and its magnetization direction is a second direction that is opposite to the first direction.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: February 21, 2012
    Assignee: NEC Corporation
    Inventors: Kiyokazu Nagahara, Shunsuke Fukami, Tetsuhiro Suzuki, Norikazu Ohshima, Nobuyuki Ishiwata