Patents by Inventor Oleg Gluschenkov

Oleg Gluschenkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11069854
    Abstract: A low temperature deposited (400° C. or less) dielectric passivation layer is formed on physically exposed surfaces of a material stack including a multilayered magnetic tunnel junction (MTJ) pillar and a top electrode. A laser anneal is then performed to improve the physical and chemical properties of the low temperature deposited dielectric passivation layer, without negatively impacting the multilayered MTJ pillar.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: July 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Michael Rizzolo, Oscar van der Straten, Alexander Reznicek, Oleg Gluschenkov
  • Patent number: 11069809
    Abstract: Fabrication method for a semiconductor device and structure are provided, which includes: providing an isolation layer at least partially disposed adjacent to at least one sidewall of a fin structure extended above a substrate structure, the fin structure including a channel region; recessing an exposed portion of the fin structure to define a residual stress to be induced into the channel region of the fin structure, wherein upper surfaces of a recessed fin portion and the isolation layer are coplanar with each other; and epitaxially growing a semiconductor material from the recessed exposed portion of the fin structure to form at least one of a source region and a drain region of the semiconductor device.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: July 20, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Alexander Reznicek, Shogo Mochizuki, Veeraraghavan S. Basker, Nicolas L. Breil, Oleg Gluschenkov
  • Patent number: 11031246
    Abstract: A method is presented for amplifying extreme ultraviolet (EUV) lithography pattern transfer into a hardmask and preventing hard mask micro bridging effects due to resist residue in a semiconductor structure. The method includes forming a top hardmask over an organic planarization layer (OPL), depositing a photoresist over the top hardmask, patterning the photoresist using EUV lithography, performing ion implantation to create doped regions within the exposed top hardmask and regions of hardmask underneath resist residue, stripping the photoresist, and selectively etching the top hardmask by either employing positive tone or negative tone etch based on an implantation material.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: June 8, 2021
    Assignee: International Business Machines Corporation
    Inventors: Yann Mignot, Yongan Xu, Oleg Gluschenkov
  • Patent number: 11022887
    Abstract: An EUV lithographic structure and methods according to embodiments of the invention includes an EUV photosensitive resist layer disposed directly on an oxide hardmask layer, wherein the oxide hardmask layer is doped with dopant ions to form a doped oxide hardmask layer so as to improve adhesion between the EUV lithographic structure and the oxide hardmask. The EUV lithographic structure is free of a separate adhesion layer.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yongan Xu, Jing Guo, Ekmini A. De Silva, Oleg Gluschenkov
  • Patent number: 11004984
    Abstract: Embodiments of the present invention are directed to forming a nanosheet field effect transistor (FET) having a low resistivity region that reduces the nanosheet external resistance. In a non-limiting embodiment of the invention, a nanosheet stack is formed over a substrate. An inner layer is formed over nanosheets in the nanosheet stack. The inner layer includes a first material having a first melting point. An outer layer is formed over the inner layer. The outer layer includes a second material having a second melting point that is lower than the first melting point. A heavily doped region is formed on a surface of the outer layer and the nanosheet stack is annealed at a temperature between the first melting point and the second melting point such that the outer layer is selectively liquified, distributing the dopants throughout the outer layer.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Heng Wu, Oleg Gluschenkov, Lan Yu, Ruilong Xie
  • Publication number: 20210119016
    Abstract: In accordance with an embodiment of the present invention, a method and semiconductor device is described, including forming a plurality of gaps of variable size between device features, each of the gaps including vertical sidewalls perpendicular to a substrate surface and a horizontal surface parallel to the substrate surface. Spacer material is directionally deposited concurrently on the horizontal surface in each gap and in a flat area using a total flow rate of gaseous precursors that minimizes gap-loading in a smallest gap compared to the flat area such that the spacer material is deposited on the substrate surface in each gap and in the flat area to a uniform thickness.
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventors: Michael P. Belyansky, Oleg Gluschenkov
  • Publication number: 20210118951
    Abstract: A method of forming an electrical device that includes forming an amorphous semiconductor material on a metal surface of a memory device, in which the memory device is vertically stacked atop a first transistor. The amorphous semiconductor material is annealed with a laser anneal having a nanosecond duration to convert the amorphous semiconductor material into a crystalline semiconductor material. A second transistor is formed from the semiconductor material. The second transistor vertically stacked on the memory device.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Oleg Gluschenkov, Yasir Sulehria
  • Publication number: 20210111246
    Abstract: A nonplanar MOSFET device such as a FinFET or a sacked nanosheets/nanowires FET has a substrate, one or more nonplanar channels disposed on the substrate, and a gate stack enclosing the nonplanar channels. A first source/drain (S/D) region is disposed on the substrate on a source side of the nonplanar channel and second S/D region is disposed on the substrate on a drain side of the nonplanar channel. The first and second S/D regions made of silicon-germanium (SiGe). In some embodiments, both S/D regions are p-type doped. Contact trenches provide a metallic electrical connection to the first and the second source/drain (S/D) regions. The S/D regions have two parts, a first part with a first concentration of germanium (Ge) and a second part with a second, higher Ge concentration that is a surface layer having convex shape and aligned with one of the contact trenches.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 15, 2021
    Inventors: Fee Li Lie, Choonghyun Lee, Kangguo Cheng, Hemanth Jagannathan, Oleg Gluschenkov
  • Patent number: 10964603
    Abstract: A method of forming a semiconductor structure includes forming one or more vertical fins each including a first semiconductor layer providing a vertical transport channel for a lower vertical transport field-effect transistor (VTFET) of a stacked VTFET structure, an isolation layer over the first semiconductor layer, and a second semiconductor layer over the isolation layer providing a vertical transport channel for an upper VTFET of the stacked VTFET structure. The method also includes forming a first gate stack including a first gate dielectric layer and a first gate conductor layer surrounding a portion of the first semiconductor layer of the vertical fins. The method further includes forming a second gate stack including a second gate dielectric layer and a second gate conductor layer surrounding a portion of the second semiconductor layer of the vertical fins. The first gate conductor layer and the second gate conductor layer are the same material.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: March 30, 2021
    Assignee: International Business Machines Corporation
    Inventors: Tenko Yamashita, Takashi Ando, Oleg Gluschenkov, Chen Zhang, Koji Watanabe
  • Publication number: 20210091230
    Abstract: Embodiments of the present invention are directed to forming a nanosheet field effect transistor (FET) having a low resistivity region that reduces the nanosheet external resistance. In a non-limiting embodiment of the invention, a nanosheet stack is formed over a substrate. An inner layer is formed over nanosheets in the nanosheet stack. The inner layer includes a first material having a first melting point. An outer layer is formed over the inner layer. The outer layer includes a second material having a second melting point that is lower than the first melting point. A heavily doped region is formed on a surface of the outer layer and the nanosheet stack is annealed at a temperature between the first melting point and the second melting point such that the outer layer is selectively liquified, distributing the dopants throughout the outer layer.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Inventors: Heng Wu, Oleg Gluschenkov, Lan Yu, Ruilong Xie
  • Publication number: 20210091302
    Abstract: A harden gap fill dielectric material that has improved chemical and physical properties is formed laterally adjacent to a multilayered magnetic tunnel junction (MTJ) pillar and a top electrode structure of a memory structure. The harden gap fill dielectric material can be formed by introducing, via ion implantation, a bond breaking additive into an as deposited gap fill dielectric material layer and thereafter curing the gap fill dielectric material layer containing the bond breaking additive. The curing includes UV curing alone, or UV curing in combination with laser annealing. The curing employed in the present application does not negatively impact the MTJ pillar or top electrode structure.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Inventors: Alexander Reznicek, Devika Sil, Oleg Gluschenkov, Yasir Sulehria
  • Patent number: 10957781
    Abstract: In accordance with an embodiment of the present invention, a method and semiconductor device is described, including forming a plurality of gaps of variable size between device features, each of the gaps including vertical sidewalls perpendicular to a substrate surface and a horizontal surface parallel to the substrate surface. Spacer material is directionally deposited concurrently on the horizontal surface in each gap and in a flat area using a total flow rate of gaseous precursors that minimizes gap-loading in a smallest gap compared to the flat area such that the spacer material is deposited on the substrate surface in each gap and in the flat area to a uniform thickness.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Belyansky, Oleg Gluschenkov
  • Patent number: 10930780
    Abstract: Described herein is a semiconductor structure and method of manufacture. The semiconductor structure includes a plurality of semiconductor fins on a substrate and a plurality of raised active regions, wherein each raised active region is located on sidewalls of a corresponding semiconductor fin among said plurality of semiconductor fins. The raised active regions are laterally spaced from any other of the raised active regions. Each raised active region comprises angled sidewall surfaces that are not parallel or perpendicular to a topmost horizontal surface of said substrate. The raised active regions are silicon germanium (SiGe). The semiconductor structure includes a metal semiconductor alloy region contacting at least said angled sidewall surfaces of at least two adjacent raised active regions. The semiconductor alloy region includes a material selected from the group consisting of nickel silicide, nickel-platinum silicide and cobalt silicide.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: February 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Ahmet S. Ozcan
  • Patent number: 10910435
    Abstract: A method of forming an electrical device that includes forming an amorphous semiconductor material on a metal surface of a memory device, in which the memory device is vertically stacked atop a first transistor. The amorphous semiconductor material is annealed with a laser anneal having a nanosecond duration to convert the amorphous semiconductor material into a crystalline semiconductor material. A second transistor is formed from the semiconductor material. The second transistor vertically stacked on the memory device.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: February 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Oleg Gluschenkov, Yasir Sulehria
  • Patent number: 10879068
    Abstract: A device and a method for forming the device is contemplated. The device and method include patterning a hardmask formed over a substrate. The hardmask is modified by raising an annealing temperature of the hardmask from a first annealing temperature to a second annealing temperature using ion implantation. The hardmask is annealed with a laser beam using a process temperature between the first annealing temperature and the second annealing temperature.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: December 29, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yongan Xu, Yann Mignot, John C. Arnold, Oleg Gluschenkov
  • Publication number: 20200388531
    Abstract: Embodiments of the invention include a method of forming a multi-layer integrated circuit (IC) structure that includes a forming a first IC layer above the substrate, wherein the first IC layer includes a network of interconnect structures, wherein the network of interconnect structures is configured to communicatively couple electronic devices of the IC. A second IC layer is formed over the first IC layer. The second IC layer is implanted with a predetermined ion implantation dose, maintained at a predetermined temperature, and further exposed to electromagnetic radiation from an energy source. The second IC layer is configured to, based at least in part of being exposed to the ion implantation and the electromagnetic radiation, experience changes in the chemical composition of the second IC layer and transform the second IC layer.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 10, 2020
    Inventors: Devika Sil, Matthew T. Shoudy, Oleg Gluschenkov, Benjamin D. Briggs, Danielle Durrant, Yasir Sulehria
  • Publication number: 20200388488
    Abstract: Embodiments of the invention include a method of forming a multi-layer integrated circuit (IC) structure that includes forming a passive energy source formed from a conductive metal. A dielectric target layer is formed over the first energy source. An active energy source is used to generate electromagnetic radiation having a predetermined wavelength, wherein the dielectric target layer is substantially transparent to the electromagnetic radiation at the predetermined wavelength. The dielectric target layer is exposed to the electromagnetic radiation by transmitting the electromagnetic radiation into and through the dielectric target layer to impact the passive energy source. The passive energy source is configured to, based at least in part on being exposed to the electromagnetic radiation, absorb the electromagnetic radiation, experience a conductive material temperature increase such that the conductive material generates heat energy, and emit the generated heat energy to the dielectric target layer.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 10, 2020
    Inventors: Devika Sil, Oleg Gluschenkov, Yasir Sulehria, Hosadurga Shobha
  • Publication number: 20200365469
    Abstract: A method of forming a semiconductor structure includes forming one or more vertical fins each including a first semiconductor layer providing a vertical transport channel for a lower vertical transport field-effect transistor (VTFET) of a stacked VTFET structure, an isolation layer over the first semiconductor layer, and a second semiconductor layer over the isolation layer providing a vertical transport channel for an upper VTFET of the stacked VTFET structure. The method also includes forming a first gate stack including a first gate dielectric layer and a first gate conductor layer surrounding a portion of the first semiconductor layer of the vertical fins. The method further includes forming a second gate stack including a second gate dielectric layer and a second gate conductor layer surrounding a portion of the second semiconductor layer of the vertical fins. The first gate conductor layer and the second gate conductor layer are the same material.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Tenko Yamashita, Takashi Ando, Oleg Gluschenkov, Chen Zhang, Koji Watanabe
  • Patent number: 10832973
    Abstract: Compressive and tensile stress is induced, respectively, on semiconductor fins in the pFET and nFET regions of a monolithic semiconductor structure including FinFETs. A tensile stressor is formed from dielectric material and a second, compressive stressor is formed from metal. The stressors may be formed in fin cut regions of the monolithic semiconductor structure and are configured to provide stress in the direction of FinFET current flow. The dielectric material may be deposited on the monolithic semiconductor structure and later removed from the fin cut regions of the pFET region. Metal exhibiting compressive residual stress is then deposited in the fin cut regions from which the dielectric material was removed. Gate cut regions may also be filled with the dielectric stressor material to impart substantially uniaxial tensile stress perpendicular to the semiconductor fins and perpendicular to electrical current flow.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Huimei Zhou, Kangguo Cheng, Michael P. Belyansky, Oleg Gluschenkov, Richard A. Conti, James Kelly, Balasubramanian Pranatharthiharan
  • Patent number: 10833192
    Abstract: A semiconductor structure is provided that includes a bulk semiconductor substrate of a first semiconductor material. The structure further includes a plurality of fin pedestal structures of a second semiconductor material located on the bulk semiconductor substrate of the first semiconductor material, wherein the second semiconductor material is different from the first semiconductor material. In accordance with the present application, each fin pedestal structure includes a pair of spaced apart semiconductor fins of the second semiconductor material.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Oleg Gluschenkov, Shogo Mochizuki, Alexander Reznicek