Patents by Inventor Parmesh Verma

Parmesh Verma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976860
    Abstract: A refrigeration system includes a vapor compression loop and a purge system in communication with the vapor compression loop. The purge system includes at least one separator including a sorbent material to separate contaminants from a refrigerant purge gas provided from the vapor compression loop when the sorbent material is pressurized.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: May 7, 2024
    Assignee: CARRIER CORPORATION
    Inventors: Rajiv Ranjan, Parmesh Verma, Yinshan Feng
  • Publication number: 20240097592
    Abstract: A system in a transport refrigeration unit (TRU) for driving a compressor and/or fan(s) of the TRU by a variable frequency drive (VFD) that is operable using AC power comprises the VFD operatively connected between the compressor and one or more ac power source such as an engine-generator assembly of the TRU and/or an electrical grid. The same VFD or a different VFD is also operatively connected between the AC power source and fan(s) associated with an evaporator, and a condenser of the TRU. The VFD is configured to be operated by the AC power sources. The VFD is operable to receive a 3-phase AC power ranging from 200 to 650 volts and 0.25 to 25 KW from at least one of the AC power source, convert the received 3-phase AC power to supply AC or DC power to a motor associated with the compressor and/or the fan(s).
    Type: Application
    Filed: September 14, 2023
    Publication date: March 21, 2024
    Inventors: Samuel Venne, Parmesh Verma, Chris Repice
  • Publication number: 20240093930
    Abstract: A cooling system for a variable frequency drive (VFD) of a transport refrigeration unit (TRU) is disclosed. The system comprises a conduit disposed within the vehicle and extending between a opening provided at a first predefined position on the outer body of the vehicle and the VFD being positioned at a second predefined position within the vehicle. The opening facilitates the inflow of ambient air within the conduit that carries the ambient air towards the VFD to enable cooling of the VFD. The system includes a grill cover adapted to be removably attached to the opening and/or the first end of the conduit, which allows entry of the ambient air within the conduit and restricts entry of outside objects and/or living organisms within the conduit.
    Type: Application
    Filed: September 13, 2023
    Publication date: March 21, 2024
    Inventors: Samuel Venne, larry Jedik, Chad Kosakowski, Parmesh Verma
  • Patent number: 11913693
    Abstract: A method of purging contaminants from a refrigerant of a heat pump via a purge system includes generating a driving force across a separator, providing refrigerant including contaminants to the separator, separating the contaminants from the refrigerant within the separator, monitoring one or more parameters of the purge system and the heat pump, and actively controlling an operational parameter of the purge system in response to monitoring one or more parameters of the purge system and the heat pump.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: February 27, 2024
    Assignee: CARRIER CORPORATION
    Inventors: Rajiv Ranjan, Yinshan Feng, Parmesh Verma, Michael A. Stark
  • Patent number: 11911724
    Abstract: A heat pump includes a vapor compression system and a cooling unit thermally coupled to the vapor compression system. A purge system is arranged in fluid communication with the vapor compression system. The purge system includes at least one separator operable to separate contaminants from a refrigerant purge gas provided to the purge system from the vapor compression system.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 27, 2024
    Assignee: CARRIER CORPORATION
    Inventors: Rajiv Ranjan, Yinshan Feng, Parmesh Verma
  • Patent number: 11906226
    Abstract: A vapor compression system (20; 120; 220; 320) has: first (22A; 122A; 222A) and second (22B; 122B; 222B) compressors; first (40) and second (46) heat exchangers; and one or more expansion devices (52; 52A, 52B). Means (32A, 32B; 32A, 32B, 126A, 126B; 32A, 32B, 232A, 232B) are provided for switching the system between operation in first and second modes using the respective first and second compressors. In the first mode: the first compressor compresses refrigerant; the compressed refrigerant is cooled in the first heat exchanger; the cooled refrigerant is expanded in at least one of the one or more expansion devices; and the expanded refrigerant absorbs heat in the second heat exchanger. In the second mode: the second compressor compresses refrigerant; the compressed refrigerant is cooled in the second heat exchanger; the cooled refrigerant is expanded in at least one of the one or more expansion devices; and the expanded refrigerant absorbs heat in the first heat exchanger.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: February 20, 2024
    Assignee: Carrier Corporation
    Inventors: Jeremy Wallet-Laïly, Ahmad M. Mahmoud, Parmesh Verma
  • Publication number: 20230400230
    Abstract: A method for operating a heat pump (20; 300) includes operating in a cooling mode wherein heat is absorbed by refrigerant in the indoor heat exchanger (26) and rejected by refrigerant in the outdoor heat exchanger (24). The heat pump switches to operation in a heating mode wherein heat is rejected by refrigerant in the indoor heat exchanger, heat is absorbed by refrigerant in the outdoor heat exchanger, and there is an ejector (60) motive flow and ejector secondary flow. In the heating mode a refrigerant pressure (PH) or temperature (TL) is measured and, responsive to the measured refrigerant pressure or temperature, at least one of a fan speed is changed and a needle (132) of the ejector is actuated.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 14, 2023
    Applicant: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Jinliang Wang, Frederick J. Cogswell, Parmesh Verma
  • Patent number: 11781791
    Abstract: A method for operating a heat pump (20; 300) includes operating in a cooling mode wherein heat is absorbed by refrigerant in the indoor heat exchanger (26) and rejected by refrigerant in the outdoor heat exchanger (24). The heat pump switches to operation in a heating mode wherein heat is rejected by refrigerant in the indoor heat exchanger, heat is absorbed by refrigerant in the outdoor heat exchanger, and there is an ejector (60) motive flow and ejector secondary flow. In the heating mode a refrigerant pressure (PH) or temperature (TL) is measured and, responsive to the measured refrigerant pressure or temperature, at least one of a fan speed is changed and a needle (132) of the ejector is actuated.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: October 10, 2023
    Assignee: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Jinliang Wang, Frederick J. Cogswell, Parmesh Verma
  • Patent number: 11686515
    Abstract: A separator for removing contamination from a fluid of a heat pump includes a housing having a hollow interior, a separation component mounted within the hollow interior, and at least one turbulence-generating element positioned within the hollow interior adjacent the separation component.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: June 27, 2023
    Assignee: CARRIER CORPORATION
    Inventors: Rajiv Ranjan, Yinshan Feng, Parmesh Verma, Michael A. Stark
  • Publication number: 20230160610
    Abstract: A system has: a compressor having a suction port and a discharge port; an ejector having a motive flow inlet, a suction flow inlet, and an outlet; a separator having an inlet, a vapor outlet, and a liquid outlet; a first heat exchanger; an expansion device; and a second heat exchanger. Conduits and valves are positioned to provide alternative operation in: a cooling mode and a heating mode. In the cooling mode, a needle of the ejector is closed. In the heating mode refrigerant passes sequentially from a first section of the second heat exchanger to a second section. In the cooling mode refrigerant passes in parallel through the first section and the second section.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 25, 2023
    Applicant: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Zuojun Shi, Frederick J. Cogswell
  • Patent number: 11635240
    Abstract: A separator for removing contamination from a fluid of a heat pump includes a housing having a hollow interior, a header plate arranged within the hollow interior and having at least one mounting hole, and a separation module mounted within the hollow interior. The separation module includes a connector for forming an interface with the at least one mounting hole. A sealant is located at the interface between the connector and the mounting hole.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 25, 2023
    Assignee: CARRIER CORPORATION
    Inventors: Rajiv Ranjan, Parmesh Verma, Haralambos Cordatos, Biswajit Mitra, Subhrajit Chakraborty, Ying She
  • Patent number: 11566822
    Abstract: A method of realizing a ferroic response is provided. The method includes applying a positive or negative conjugate field, which is of a first polarity, to a ferroic material to obtain a substantially minimized entropy of the ferroic material (301) and applying a slightly negative or a slightly positive conjugate field, which is of a second polarity opposite the first polarity, to the ferroic material to obtain a substantially maximized entropy of the ferroic material (302).
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: January 31, 2023
    Assignee: CARRIER CORPORATION
    Inventors: Joseph V. Mantese, Wei Xie, Subramanyaravi Annapragada, Parmesh Verma, Scott Alan Eastman
  • Patent number: 11561028
    Abstract: A system (20; 300) has: a compressor (22) having a suction port (40) and a discharge port (42); an ejector (32) having a motive flow inlet (50), a suction flow inlet (52), and an outlet (54); a separator (34) having an inlet (72), a vapor outlet (74), and a liquid outlet (76); a first heat exchanger (24); an expansion device (28); and a second heat exchanger (26; 302). Conduits and valves are positioned to provide alternative operation in: a cooling mode; a first heating mode; and a second heating mode. In the cooling mode and second heating mode, a needle (60) of the ejector is closed.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: January 24, 2023
    Assignee: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Zuojun Shi, Frederick J. Cogswell
  • Patent number: 11499766
    Abstract: An electronic expansion valve, a heat exchange system, and a control for controlling an electronic expansion valve. The electronic expansion valve includes: a valve body; a first temperature sensor configured to detect an evaporator temperature Teva; a second temperature sensor configured to detect a compressor inlet temperature Tsuc; a third temperature sensor configured to detect a compressor outlet temperature Tdis; a fourth temperature sensor configured to detect a condenser temperature Tcon; and a controller, which is associated with the first temperature sensor, the second temperature sensor, the third temperature sensor and the fourth temperature sensor, and which adjusts an opening degree of the valve body based on temperature signals from the first temperature sensor, the second temperature sensor, the third temperature sensor and the fourth temperature sensor.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: November 15, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Parmesh Verma, Yinshan Feng
  • Patent number: 11466906
    Abstract: Disclosed is a heat transfer system with a module that includes a peripheral frame (10) and an electrocaloric element (46) disposed in an opening in the peripheral frame. The electrocaloric element includes an electrocaloric film (46), a first electrode (48) on a first side of the electrocaloric film, and a second electrode (50) on a second side of the electrocaloric film. First and second electrically conductive elements (24, 25) are disposed adjacent to first and second surfaces of the peripheral frame, and provide an electrical connection to the first and second electrodes.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 11, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Wei Xie, Aritra Sur, Subramanyaravi Annapragada, William A. Rioux, Joseph V. Mantese, Parmesh Verma, Scott Alan Eastman, Thomas D. Radcliff
  • Patent number: 11454415
    Abstract: A building heating or cooling system is disclosed that includes an air handling system having an air delivery flow path in fluid communication with a conditioned space in the building. The building heating or cooling system also includes an electrocaloric heating or cooling system that includes first and second electrocaloric modules. A first inlet receives air from the conditioned space or the air delivery flow path and directs it through the first or second electrocaloric module to a first outlet to the conditioned space or the air delivery flow path, and a second inlet that receives air from the conditioned space or the air delivery flow path and directs it through the first or second electrocaloric module to a second outlet to outside the conditioned space.
    Type: Grant
    Filed: November 23, 2017
    Date of Patent: September 27, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Jialong Wang, Dongzhi Guo, Subramanyaravi Annapragada, Thomas D. Radcliff, Sheng Li, Parmesh Verma, Craig R. Walker
  • Patent number: 11448427
    Abstract: A refrigerated system includes a vapor compression system defining a refrigerant flow path and a heat recovery system defining a heat recovery fluid flow path. The heat recovery system is thermally coupled to the vapor compression system. The heat recovery system includes a first heat exchanger within which heat is transferred between a heat recovery fluid and an engine coolant and at least one recovery heat exchanger positioned along the heat recovery fluid flow path directly upstream from the first heat exchanger.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: September 20, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Hongsheng Liu, Parmesh Verma, Frederick J. Cogswell, Yinshan Feng
  • Patent number: 11448436
    Abstract: A method of making an electrocaloric element includes forming conductive layers on opposing surfaces of a film comprising an electrocaloric material to form an electrocaloric element, wherein the forming of the conductive layers includes one or more of: vapor deposition of the conductive layers under reduced pressure for a duration of time, wherein the duration of time under reduced pressure is less than 240 minutes; vapor deposition of the conductive layers under reduced pressure for a duration of time, wherein the duration of time of exposure to conductive material deposition is less than 240 minutes; vapor deposition of the conductive layers under reduced pressure, wherein the reduced pressure is 10?8 torr to 500 torr; or maintaining the film at a temperature of less than or equal to 200° C. during forming of the conductive layers.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: September 20, 2022
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Wei Xie, Subramanyaravi Annapragada, Joseph V. Mantese, Parmesh Verma, Thomas D. Radcliff, William A. Rioux
  • Patent number: 11428444
    Abstract: A heat transfer system is disclosed in which, an electrocaloric material includes a copolymer of a monomer mixture including (i) vinylidene fluoride, (ii) an addition polymerization monomer selected from tetrafluoroethylene, trifluoroethylene, or a monomer smaller than trifluoroethylene, and (iii) a halogenated addition polymerization monomer different than (ii) that is larger than vinylidene fluoride. The electrocaloric material also includes an additive selected from a nucleating agent having a polar surface charge, electrocalorically active solid particles, or a combination thereof. Electrodes are disposed on opposite surfaces of the electrocaloric material, and an electric power source is configured to provide voltage to the electrodes. The system also includes a first thermal flow path between the electrocaloric material and a heat sink, and a second thermal flow path between the electrocaloric material and a heat source.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: August 30, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Scott Alan Eastman, Joseph V. Mantese, Wei Xie, Subramanyaravi Annapragada, Parmesh Verma, Sergei F. Burlatsky, Wayde R. Schmidt, Treese Hugener-Campbell
  • Patent number: 11408647
    Abstract: A refrigerated system includes a heat recovery system defining a heat recovery fluid flow path. The heat recovery system includes an ejector having a primary inlet and a secondary inlet and a first heat exchanger within which heat is transferred between a heat recovery fluid and a secondary fluid. The first heat exchanger is located upstream from the primary inlet of the ejector. A second heat exchanger within which heat is transferred from a heat transfer fluid to the heat recovery fluid is upstream from the secondary inlet of the ejector. At least one recovery heat exchanger is positioned along the heat recovery fluid flow path directly upstream from the first heat exchanger.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: August 9, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Frederick J. Cogswell, Yinshan Feng, Parmesh Verma, Hongsheng Liu, Dhruv Chanakya Hoysall