Patents by Inventor Parmesh Verma

Parmesh Verma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190242625
    Abstract: A heat transfer system cycles between a first mode where a heat transfer fluid is directed to a first electrocaloric module and from the first electrocaloric module to a heat exchanger to a second electrocaloric module while one of the first and second electrocaloric modules is energized, and a second mode where the heat transfer fluid is directed to the second electrocaloric module and from the second electrocaloric module to the heat exchanger to the first electrocaloric module, while the other of the first and second electrocaloric modules is energized. The modes are repeatedly cycled in alternating order directing the heat transfer fluid to cause a temperature gradient in each of the first and second electrocaloric modules, and heat is rejected to the fluid from the heat exchanger or is absorbed by the heat exchanger from the fluid.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Subramanyaravi Annapragada, Andrzej Ernest Kuczek, Thomas D. Radcliff, Charles E. Lents, Joseph V. Mantese, Scott Alan Eastman, Parmesh Verma, Wei Xie
  • Patent number: 10371408
    Abstract: An HVAC/R system including an HVAC component configured to allow a flammable refrigerant to flow therethrough, at least one supply flame arrestor positioned within the supply air steam, and at least one return flame arrestor positioned within the return air stream, wherein each flame arrestor includes an open area greater than 60%.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: August 6, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Paul Papas, Parmesh Verma, Richard G. Lord, William F. Walter
  • Publication number: 20190226727
    Abstract: An electrocaloric element for a heat transfer system includes an electrocaloric material of a copolymer of (i) vinylidene fluoride, (ii) an addition polymerization monomer selected from tetrafluoroethylene, trifluoroethylene, vinyl fluoride, or combinations thereof, and (iii) a halogenated addition polymerization monomer larger than vinylidene fluoride. It is also provided that: (a) the monomer (ii) includes an addition polymerization monomer smaller than trifluoroethylene, (b) at least one of the addition polymerization monomers (ii) or (iii) is a chiral monomer, and the copolymer includes syndiotactic ordered segments of chiral monomer units, and/or (c) at least one of the addition polymerization monomers (ii) or (iii) comprises chlorine, and the copolymer includes an ordered distribution of monomer units comprising chlorine along the copolymer polymer backbone.
    Type: Application
    Filed: June 27, 2016
    Publication date: July 25, 2019
    Inventors: Scott Alan Eastman, Sergei F. Burlatsky, Joseph V. Mantese, Wei Xie, Subramanyaravi Annapragada, Parmesh Verma, Vadim V. Atrazhev, Vadim I. Sultanov
  • Patent number: 10352592
    Abstract: A vapor compression system (200; 300; 400) has: a compressor (22); a first heat exchanger (30); a second heat exchanger (64); an ejector (38); separator (48); and an expansion device (70). A plurality of conduits are positioned to define a first flowpath sequentially through: the compressor; the first heat exchanger; the ejector from a motive flow inlet through (40) an outlet (44); and the separator, and then branching into: a first branch returning to the compressor; and a second branch passing through the expansion device and second heat exchanger to a secondary flow inlet (42). The plurality of conduits are positioned to define a bypass flowpath (202; 302; 402) bypassing the motive flow inlet and rejoining the first flowpath at essentially separator pressure but away from the separator.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 16, 2019
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Zuojun Shi, Hans-Joachim Huff, Parmesh Verma, Thomas D. Radcliff, Frederick J. Cogswell, Jinliang Wang, Hongsheng Liu
  • Publication number: 20190170409
    Abstract: A heat transfer system is disclosed in which, an electrocaloric material includes a copolymer of a monomer mixture including (i) vinylidene fluoride, (ii) an addition polymerization monomer selected from tetrafluoroethylene, trifluoroethylene, or a monomer smaller than trifluoroethylene, and (iii) a halogenated addition polymerization monomer different than (ii) that is larger than vinylidene fluoride. The electrocaloric material also includes an additive selected from a nucleating agent having a polar surface charge, electrocalorically active solid particles, or a combination thereof. Electrodes are disposed on opposite surfaces of the electrocaloric material, and an electric power source is configured to provide voltage to the electrodes. The system also includes a first thermal flow path between the electrocaloric material and a heat sink, and a second thermal flow path between the electrocaloric material and a heat source.
    Type: Application
    Filed: June 27, 2016
    Publication date: June 6, 2019
    Inventors: Scott Alan Eastman, Joseph V. Mantese, Wei Xie, Subramanyaravi Annapragada, Parmesh Verma, Sergei F. Burlatsky, Wayde R. Schmidt, Treese Hugener-Campbell
  • Publication number: 20190118618
    Abstract: A refrigerated transport system (20) comprises: an engine (30). A vapor compression system (50) comprises: a compressor (40) for compressing a flow of a refrigerant; a first heat exchanger (60) along a refrigerant flowpath (52) of the refrigerant; and a second heat exchanger (66) along the refrigerant flowpath of the refrigerant. A heat recovery system (56) has: a first heat exchanger (110) for transferring heat from the engine to a heat recovery fluid along a heat recovery flowpath (58); and a second heat exchanger (112; 63) along the heat recovery flowpath. The heat recovery system second heat exchanger and the vapor compression system first heat exchanger are respective portions of a shared tube/fin package.
    Type: Application
    Filed: April 25, 2017
    Publication date: April 25, 2019
    Applicant: Carrier Corporation
    Inventors: Abdelrahman I. Elsherbini, Parmesh Verma, Frederick J. Cogswell
  • Patent number: 10267544
    Abstract: A heat transfer system cycles between a first mode where a heat transfer fluid is directed to a first electrocaloric module and from the first electrocaloric module to a heat exchanger to a second electrocaloric module while one of the first and second electrocaloric modules is energized, and a second mode where the heat transfer fluid is directed to the second electrocaloric module and from the second electrocaloric module to the heat exchanger to the first electrocaloric module, while the other of the first and second electrocaloric modules is energized. The modes are repeatedly cycled in alternating order directing the heat transfer fluid to cause a temperature gradient in each of the first and second electrocaloric modules, and heat is rejected to the fluid from the heat exchanger or is absorbed by the heat exchanger from the fluid.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: April 23, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Subramanyaravi Annapragada, Andrzej Ernest Kuczek, Thomas D. Radcliff, Charles E. Lents, Joseph V. Mantese, Scott Alan Eastman, Parmesh Verma, Wei Xie
  • Patent number: 10267542
    Abstract: A heat pump system includes a refrigerant circuit, at least one variable speed compressor operating with a maximum pressure ratio of at least 5.0 and a variable speed range of at least three times (3×), a heat absorption heat exchanger, a heat rejection heat exchanger, an ejector disposed on the refrigerant circuit upstream of the compressor to extend a pressure ratio range and a volumetric flow range of the compressor in the cold climates, a separator disposed downstream of the ejector and upstream of the heat absorption heat exchanger, and at least one variable speed fan configured to move air through the heat rejection heat exchanger to provide a predefined an air discharge temperature greater than 90° F. A two-phase refrigerant is provided to an inlet of the heat absorption heat exchanger with a quality of less than or equal to 0.05.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: April 23, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Thomas D. Radcliff, Richard G. Lord, Jeffrey J. Nieter
  • Publication number: 20190039017
    Abstract: A moisture removal system for removing moisture from a gas is disclosed including a water absorption vessel with a microemulsion. The system also includes a gas-liquid phase separator in fluid communication with a water absorption vessel gas outlet, a gas outlet for conditioned air in fluid communication with a conditioned space, and a liquid outlet. An optional heat exchanger heats used microemulsion from the water absorption for water desorption in a water desorption vessel. An optional microemulsion regenerator provides thermal regeneration of microemulsion from the water desorption vessel for returning regenerated microemulsion to the water absorption vessel.
    Type: Application
    Filed: January 25, 2017
    Publication date: February 7, 2019
    Inventors: Randolph Carlton McGee, Parmesh Verma, Thomas D. Radcliff, Zissis A. Dardas
  • Patent number: 10174975
    Abstract: A heat transfer system includes a first two-phase heat transfer fluid vapor/compression circulation loop including a compressor, a heat exchanger condenser, an expansion device, and a heat absorption side of a heat exchanger evaporator/condenser. A first conduit in a closed fluid circulation loop circulates a first heat transfer fluid therethrough. A second two-phase heat transfer fluid circulation loop transfers heat to the first heat transfer fluid circulation loop through the heat exchanger evaporator/condenser, including a heat rejection side of the heat exchanger evaporator/condenser, a liquid pump, a liquid refrigerant reservoir located upstream of the liquid pump and downstream of the heat exchanger evaporator/condenser, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough having an ASHRAE Class A toxicity and a Class 1 or 2L flammability rating.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 8, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Yinshan Feng, Jinliang Wang, Futao Zhao, Thomas D. Radcliff, Parmesh Verma
  • Publication number: 20190003748
    Abstract: A heat transfer system is disclosed that includes a plurality of electrocaloric elements (12) including an electrocaloric film (14), a first electrode (16) on a first side of the electrocaloric film, and a second electrode (18) on a second side of the electrocaloric film. A fluid flow path (20) is disposed along the plurality of electrocaloric elements, formed by corrugated fluid flow guide elements (19).
    Type: Application
    Filed: December 21, 2015
    Publication date: January 3, 2019
    Inventors: Mikhail B. Gorbounov, Parmesh Verma, Subramanyaravi Annapragada, Andrzej E. Kuczek, Matthew E. Lynch, Andrew Smeltz, Neal R. Herring, Ulf J. Jonsson, Thomas D. Radcliff
  • Publication number: 20190003747
    Abstract: A heat transfer system is disclosed including a plurality of modules arranged in a stack. The stack modules include electrocaloric element and electrodes on each side of the film. A fluid flow path is disposed between two or more electrocaloric elements. A first electrical bus element (18) in electrical contact with the first electrode (14), and a second electrical bus element (20) in electrical contact with second electrode (16). The first electrical bus element is electrically connected to at least one other electrical bus of another electrocaloric element in the stack at the same polarity as said first electrical bus, or the second electrical bus element is electrically connected to at least one other electrical bus of another electrocaloric element in the stack at the same polarity as said second electrical bus.
    Type: Application
    Filed: December 21, 2015
    Publication date: January 3, 2019
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Craig R. Walker, Jonathan Rheaume, Michael L. Perry, Scott Alan Eastman, Subramanyaravi Annapragada, Parmesh Verma, Joseph V. Mantese
  • Publication number: 20190003749
    Abstract: A heating, ventilation, air conditioning and refrigeration (HVAC/R) system includes a sorption circuit including a heat absorption heat exchanger in fluid communication with a primary fluid flow source such that a primary fluid flow from is directed therethrough. The heat absorption heat exchanger is configured to exchange thermal energy between the primary fluid flow and a secondary fluid flow. A sorption heat exchanger includes a sorbent material to adsorb or absorb the primary fluid flow, generating thermal energy. The sorption heat exchanger is configured to transfer the generated thermal energy to a tertiary fluid flow. A heat exchange circuit is in fluid communication with the sorption circuit and includes a control valves connected to both the secondary fluid flow and the tertiary fluid flow configured to selectably direct the secondary fluid flow and/or the tertiary fluid flow to a conditioning heat exchanger or an ambient heat exchanger.
    Type: Application
    Filed: October 18, 2016
    Publication date: January 3, 2019
    Inventors: Bart Antonie van Hassel, Abdelrahman Elsherbini, Thomas D. Radcliff, Parmesh Verma
  • Publication number: 20190003746
    Abstract: A method of making an electrocaloric element includes dissolving or dispersing an electrocaloric polymer in an organic solvent having a boiling point of less than 100° C. at 1 atmosphere to form a liquid composition comprising the electrocaloric polymer. A film of the liquid composition is cast on a substrate, and the organic solvent is evaporated to form a film of the electrocaloric polymer. The film is removed from the substrate and disposed between electrical conductors to form an electrocaloric element.
    Type: Application
    Filed: December 21, 2015
    Publication date: January 3, 2019
    Inventors: Wei Xie, Subramanyaravi Annapragada, Joseph V. Mantese, Parmesh Verma, Thomas D. Radcliff
  • Publication number: 20180375008
    Abstract: A method of making an electrocaloric element includes forming conductive layers on opposing surfaces of a film comprising an electrocaloric material to form an electrocaloric element, wherein the forming of the conductive layers includes one or more of: vapor deposition of the conductive layers under reduced pressure for a duration of time, wherein the duration of time under reduced pressure is less than 240 minutes; vapor deposition of the conductive layers under reduced pressure for a duration of time, wherein the duration of time of exposure to conductive material deposition is less than 240 minutes; vapor deposition of the conductive layers under reduced pressure, wherein the reduced pressure is 10 torr to 500 torr; or maintaining the film at a temperature of less than or equal to 200° C. during forming of the conductive layers.
    Type: Application
    Filed: December 21, 2015
    Publication date: December 27, 2018
    Inventors: Wei Xie, Subramanyaravi Annapragada, Joseph V. Mantese, Parmesh Verma, Thomas D. Radcliff, William A. Rioux
  • Publication number: 20180363956
    Abstract: A heat transfer system includes an electrocaloric element comprising an electrocaloric film (12). A first electrical conductor is disposed on a first side of the electrocaloric film, and a second electrical conductor is disposed on a second side of the electrocaloric film. At least one of the first and second electrical conductors is an electrically conductive liquid. An electric power source (20) is in electrical contact with the first and second electrical conductors, and is configured to provide an electrical field across the electrocaloric film. A liquid flow path (28) is disposed along the plurality of electrocaloric elements for the electrically conductive liquid.
    Type: Application
    Filed: December 21, 2015
    Publication date: December 20, 2018
    Inventors: Scott Alan Eastman, Andrzej E. Kuczek, Subramanyaravi Annapragada, Joseph V. Mantese, Ram Ranjan, Vladimir Blasko, Parmesh Verma, Ulf J. Jonsson
  • Publication number: 20180328643
    Abstract: A refrigerated transport system (20) comprises a body (22) enclosing a refrigerated compartment (69). A refrigeration system (30) comprises: a vapor compression loop (31) having a first heat exchanger (38) positioned to reject heat to an external environment in a cooling mode. A heat transfer loop (32) has a second heat exchanger (58) positioned to absorb heat from the refrigerated compartment in the cooling mode. An inter-loop heat exchanger (44) has a first leg (42) along the vapor compression loop and a second leg (43) along the heat transfer loop in heat exchange relation with the first leg.
    Type: Application
    Filed: November 9, 2016
    Publication date: November 15, 2018
    Applicant: Carrier Corporation
    Inventors: Renee A. Eddy, Jeffrey J. Burchill, Giorgio Rusignuolo, Robert A. Chopko, Larry D. Burns, Ivan Rydkin, Ciara N. Poolman, Paul Papas, Parmesh Verma
  • Publication number: 20180328638
    Abstract: A system (20; 300) comprises: a compressor (22) having a suction port (40) and a discharge port (42); an ejector (32) having a motive flow inlet (50), a suction flow inlet (52), and an outlet (54); a separator (34) having an inlet (72), a vapor outlet (74), and a liquid outlet (76); a first heat exchanger (24); an expansion device (28); and a second heat exchanger (26; 302). Conduits and valves are positioned to provide alternative operation in: a cooling mode; a first heating mode; and a second heating mode. In the cooling mode and second heating mode, a needle (60) of the ejector is closed.
    Type: Application
    Filed: November 18, 2016
    Publication date: November 15, 2018
    Applicant: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Zuojun Shi, Frederick J. Cogswell
  • Publication number: 20180321121
    Abstract: An HVAC/R assembly including an HVAC/R unit including a casing, a heat exchanger disposed within the casing, the heat exchanger configured to circulate a refrigerant therethrough, and a plurality of sensing devices in communication with the HVAC/R unit, wherein each of the plurality of sensing devices is configured to detect a presence of the refrigerant.
    Type: Application
    Filed: January 18, 2017
    Publication date: November 8, 2018
    Inventors: Ivan Rydkin, Lei Chen, Warren Clough, Parmesh Verma, Paul Papas, Larry D. Burns, Meredith B. Colket
  • Patent number: 10101060
    Abstract: A cooling system includes a main closed-loop refrigerant circuit having a compressor and a condenser. The cooling system also includes a subcooler closed-loop refrigerant circuit having a compressor and a condenser. A portion of the condenser of the subcooler circuit is in parallel with the condenser of the main circuit with respect to air flow. A single exhaust fan can be in fluid communication with both the condenser of the main circuit and the condenser of the subcooler circuit.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: October 16, 2018
    Assignee: Carrier Corporation
    Inventors: Yinshan Feng, Parmesh Verma, Ahmad M. Mahmoud