Patents by Inventor Patrick Y. Maeda

Patrick Y. Maeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827037
    Abstract: A laser imager for a printing system, comprising a plurality of independently addressable surface emitting lasers arranged in a linear array on a common substrate chip and including a common cathode and a dedicated control channel associated with an address trace line for each laser of the plurality of independently addressable surface emitting lasers, and optical elements arranged in a linear lens array configured to capture and focus light from the plurality of independently addressable surface emitting lasers onto a imaging member, wherein the plurality of independently addressable surface emitting lasers arranged in a linear array and the optical elements arranged in a linear lens array operate together to image the imaging member.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: November 28, 2023
    Assignee: Xerox Corporation
    Inventors: Joerg Martini, Christopher Chua, Zhihong Yang, Mark Teepe, Patrick Y. Maeda, Sourobh Raychaudhuri, Elif Karatay, Noble M. Johnson, David K. Biegelsen, Joseph Lee
  • Publication number: 20230339024
    Abstract: A 3D object printer is disclosed. The 3D object printer advantageously incorporates one or more optical systems and optical devices that improve the operation and output of the 3D object printer including, for example, a laser heating system or an optical monitoring system. A variety of arrangements of optical structures and systems are provided to guide light beam(s), such as laser beams, illumination beams, reflected light beams, etc., into or out of the fabrication environment of the 3D object printer. These optical structures and systems overcome structural and spatial constraints of the 3D object printer, which might otherwise prevent effective operation of the laser heating system or the optical monitoring system.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 26, 2023
    Inventor: Patrick Y. Maeda
  • Patent number: 11774774
    Abstract: A structure can be provided for collimating light from a light source (e.g., vertical cavity surface emitting diodes). The structure can include at least one light source, a pit formed at an output of the at least one light source and a microbead formed in the pit. Microbeads can function as a lens to collimate light emitting from the at least one light source. The structure can provide by forming an array of VCSELs on a substrate, forming a pit in front of each VCSEL of the array of VCSELs, and assembling a microbead in each pit formed in front of each VCSEL. The microbeads can thereby function as lenses to collimate light emitted from the VCSELs.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: October 3, 2023
    Assignee: Xerox Corporation
    Inventors: Jacob Chamoun, Patrick Y. Maeda, Joerg Martini, Christopher L. Chua
  • Patent number: 11679556
    Abstract: Additive manufacturing devices and methods for the same are provided. The additive manufacturing device may include a stage configured to support a substrate, a printhead disposed above the stage, and a targeted heating system disposed proximal the printhead. The printhead may be configured to heat a build material to a molten build material and deposit the molten build material on the substrate in the form of droplets to fabricate the article. The targeted heating system may be configured to control a temperature or temperature gradient of the droplets deposited on the substrate, an area proximal the substrate, or combinations thereof.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: June 20, 2023
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Patrick Y. Maeda, Joanne L. Lee
  • Publication number: 20230055149
    Abstract: A laser imager for a printing system, comprising a plurality of independently addressable surface emitting lasers arranged in a linear array on a common substrate chip and including a common cathode and a dedicated control channel associated with an address trace line for each laser of the plurality of independently addressable surface emitting lasers, and optical elements arranged in a linear lens array configured to capture and focus light from the plurality of independently addressable surface emitting lasers onto a imaging member, wherein the plurality of independently addressable surface emitting lasers arranged in a linear array and the optical elements arranged in a linear lens array operate together to image the imaging member.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Inventors: Joerg Martini, Christopher Chua, Zhihong Yang, Mark Teepe, Patrick Y. Maeda, Sourobh Raychaudhuri, Elif Karatay, Noble M. Johnson, David K. Biegelsen, Joseph Lee
  • Publication number: 20230057298
    Abstract: A structure can be provided for collimating light from a light source (e.g., vertical cavity surface emitting diodes). The structure can include at least one light source, a pit formed at an output of the at least one light source and a microbead formed in the pit. Microbeads can function as a lens to collimate light emitting from the at least one light source. The structure can provide by forming an array of VCSELs on a substrate, forming a pit in front of each VCSEL of the array of VCSELs, and assembling a microbead in each pit formed in front of each VCSEL. The microbeads can thereby function as lenses to collimate light emitted from the VCSELs.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Inventors: Jacob Chamoun, Patrick Y. Maeda, Joerg Martini, Christopher L. Chua
  • Publication number: 20230055986
    Abstract: Focusing optics can include optical elements disposed and bonded in a linear arrangement (linear array) in at least two rows. A transparent bonding agent can secure alignment of the at least two rows of the optical elements. Scattering elements can also be disposed in the transparent polymer to cause light diffusion. Diffused or un-diffused light from a semiconductor laser array can then be caused to pass through the optical element and illuminate a target substrate such as an imaging member in a printing system.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Inventors: Joerg Martini, Zhihong Yang, Patrick Y. Maeda, Yu Wang
  • Publication number: 20230056905
    Abstract: A semiconductor surface-emitting laser array can be provided with a group of independently addressable light-emitting pixels arranged in at least two rows and in a linear array on a common substrate chip and including a common cathode and a dedicated channel associated with an address trace line for each pixel. An aggregate linear pitch can be achieved between pixels of the at least two rows along the linear array in a cross process direction that is less than the size of a pixel. The semiconductor laser array can include more than one common substrate chip tiled and stitched together in a staggered arrangement to provide an at least 11-inch wide, 1200pdi imager with timing delays associated with each of the more than one common substrate chip in the staggered arrangement.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Inventors: Christopher Chua, Joerg Martini, Zhihong Yang, Noble M. Johnson, Patrick Y. Maeda, Peter Kiesel
  • Patent number: 11586031
    Abstract: An optical imager system and method of operating the optical imager system, can include one or more imager modules including a laser light source, a collimator, an illumination optical system, a grating light valve, a spatial light modulator and a projection optical system. A group of imager modules can include the one or more imager modules. The group of imager modules is operable in a stacked arrangement to produce an image from in-line stitching of individual images generated by the one or more imager modules. The illumination optical system can homogenize, shape, and direct a beam from the laser light source onto the grating light valve, and homogenization can occur in a cross-process direction.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: February 21, 2023
    Assignee: XEROX CORPORATION
    Inventor: Patrick Y. Maeda
  • Patent number: 11518086
    Abstract: Additive manufacturing devices and methods for the same are provided. The additive manufacturing device may include a stage configured to support a substrate, a printhead disposed above the stage, and a targeted heating system disposed proximal the printhead. The printhead may be configured to heat a build material to a molten build material and deposit the molten build material on the substrate in the form of droplets to fabricate the article. The targeted heating system may be configured to control a temperature or temperature gradient of the droplets in a flight path interposed between the printhead and the substrate.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: December 6, 2022
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Patrick Y. Maeda, Joanne L. Lee
  • Publication number: 20220176630
    Abstract: Additive manufacturing devices and methods for the same are provided. The additive manufacturing device may include a stage configured to support a substrate, a printhead disposed above the stage, and a targeted heating system disposed proximal the printhead. The printhead may be configured to heat a build material to a molten build material and deposit the molten build material on the substrate in the form of droplets to fabricate the article. The targeted heating system may be configured to control a temperature or temperature gradient of the droplets deposited on the substrate, an area proximal the substrate, or combinations thereof.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 9, 2022
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Patrick Y. Maeda, Joanne L. Lee
  • Publication number: 20220176618
    Abstract: Additive manufacturing devices and methods for the same are provided. The additive manufacturing device may include a stage configured to support a substrate, a printhead disposed above the stage, and a targeted heating system disposed proximal the printhead. The printhead may be configured to heat a build material to a molten build material and deposit the molten build material on the substrate in the form of droplets to fabricate the article. The targeted heating system may be configured to control a temperature or temperature gradient of the droplets in a flight path interposed between the printhead and the substrate.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 9, 2022
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Patrick Y. Maeda, Joanne L. Lee
  • Publication number: 20220152233
    Abstract: Methods and systems for disinfecting a surface, can include a light source, and a transparent window located above the light source. The light source can be integrated into an object, and an outer surface of the object can be located above the transparent window. Light from the light source can irradiate the outer surface through the transparent window and from within the object to disinfect the outer surface of the object. The light can comprise violet and ultraviolet (UV) light. A photocatalytic layer comprising a photocatalytic material may also be located above the transparent window and below the outer surface.
    Type: Application
    Filed: November 19, 2020
    Publication date: May 19, 2022
    Inventors: Thomas Wunderer, Joerg Martini, Patrick Y. Maeda, Barbara Cromarty, Paloma Fautley
  • Publication number: 20220011566
    Abstract: An optical imager system and method of operating the optical imager system, can include one or more imager modules including a laser light source, a collimator, an illumination optical system, a grating light valve, a spatial light modulator and a projection optical system. A group of imager modules can include the one or more imager modules. The group of imager modules is operable in a stacked arrangement to produce an image from in-line stitching of individual images generated by the one or more imager modules. The illumination optical system can homogenize, shape, and direct a beam from the laser light source onto the grating light valve, and homogenization can occur in a cross-process direction.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 13, 2022
    Inventor: Patrick Y. Maeda
  • Patent number: 10795169
    Abstract: An illuminator optical system combines, homogenizes, and shapes light spatially and angularly from one or more high power fiber coupled lasers. It may include a multichannel fiber cable, collimation and beam shaping optics, a multiple lens array (e.g., fly's eye lens array), and an objective lens. The multichannel fiber collects the light from the high power fiber coupled lasers and produces an aligned array of one or more optical fibers at the output of the cable. The light output from the cable is collimated and relayed to a multiple lens array that spatially divides and shapes the light into an array of beams. The objective lens homogenizes the light by collimating and overlapping the beams into a uniform top hat irradiance distribution in at least one dimension, resulting in the illumination pattern having the required spatial size and desired angular distribution at the illumination plane.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: October 6, 2020
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Patrick Y. Maeda, David K. Biegelsen
  • Publication number: 20200117016
    Abstract: An illuminator optical system combines, homogenizes, and shapes light spatially and angularly from one or more high power fiber coupled lasers. It may include a multichannel fiber cable, collimation and beam shaping optics, a multiple lens array (e.g., fly's eye lens array), and an objective lens. The multichannel fiber collects the light from the high power fiber coupled lasers and produces an aligned array of one or more optical fibers at the output of the cable. The light output from the cable is collimated and relayed to a multiple lens array that spatially divides and shapes the light into an array of beams. The objective lens homogenizes the light by collimating and overlapping the beams into a uniform top hat irradiance distribution in at least one dimension, resulting in the illumination pattern having the required spatial size and desired angular distribution at the illumination plane.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 16, 2020
    Inventors: Patrick Y. MAEDA, David K. BIEGELSEN
  • Patent number: 10551625
    Abstract: An illuminator optical system combines, homogenizes, and shapes light spatially and angularly from one or more high power fiber coupled lasers. It may include a multichannel fiber cable, collimation and beam shaping optics, a multiple lens array (e.g., fly's eye lens array), and an objective lens. The multichannel fiber collects the light from the high power fiber coupled lasers and produces an aligned array of one or more optical fibers at the output of the cable. The light output from the cable is collimated and relayed to a multiple lens array that spatially divides and shapes the light into an array of beams. The objective lens homogenizes the light by collimating and overlapping the beams into a uniform top hat irradiance distribution in at least one dimension, resulting in the illumination pattern having the required spatial size and desired angular distribution at the illumination plane.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: February 4, 2020
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Patrick Y. Maeda, David K. Biegelsen
  • Patent number: 10466455
    Abstract: High resolution printing systems that utilize high power laser diode bars and digital mirror devices (DMD) require side-by-side stacking of illumination modules to stitching of the image from each module to form a longer total image width. An inline illumination optical system having a refractive prism and Total Internal Reflection (TIR) prism pair with an air gap along with a light guide transporting light beams at a compound angle to the prism pair eliminates the need for any axial rotation of the laser and light guide, and enables side-by-side module stacking. The illumination optical system includes an illumination module having a light source, the light guide, a DMD array and a Refractive TIR (RTIR) prism. The system also includes a DMD housing containing the DMD array and having a width within which the illumination module is confined to allow side-by-side stacking.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 5, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Patrick Y. Maeda, Timothy D. Stowe
  • Patent number: 10397529
    Abstract: A backplane has an array of output terminals arranged on an output surface of the backplane, and an array of solid state optical switches, each optical switch corresponding to one of the output terminals, wherein the solid state optical switches are responsive to light of a control wavelength and are transparent to light of a sensing wavelength, wherein the backplane is of a material transparent to light of a sensing wavelength different from the control wavelength. An optical system includes a backplane having an array of optocouplers, a projector to generate light of a control wavelength to which the optocouplers are responsive, optics to direct the control light onto the array of optocouplers on a backplane, an imaging system responsive to light of a sensing wavelength, wherein the backplane is at least partially transparent to the sensing wavelength.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: August 27, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Jengping Lu, Patrick Y. Maeda, Sourobh Raychaudhuri, David K. Biegelsen, Eugene M. Chow
  • Publication number: 20190113762
    Abstract: An illuminator optical system combines, homogenizes, and shapes light spatially and angularly from one or more high power fiber coupled lasers. It may include a multichannel fiber cable, collimation and beam shaping optics, a multiple lens array (e.g., fly's eye lens array), and an objective lens. The multichannel fiber collects the light from the high power fiber coupled lasers and produces an aligned array of one or more optical fibers at the output of the cable. The light output from the cable is collimated and relayed to a multiple lens array that spatially divides and shapes the light into an array of beams. The objective lens homogenizes the light by collimating and overlapping the beams into a uniform top hat irradiance distribution in at least one dimension, resulting in the illumination pattern having the required spatial size and desired angular distribution at the illumination plane.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 18, 2019
    Inventors: Patrick Y. MAEDA, David K. BIEGELSEN