Patents by Inventor Patrick Y. Maeda

Patrick Y. Maeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120325314
    Abstract: A method for harvesting solar power by concentrating sunlight onto a raised solar receiver disposed on a tower. The method involves rotating a mirror array made up of multiple flat mirrors as a unit around a vertical axis such that sunlight shines on the mirror array from a fixed apparent azimuth angle at all times during daylight hours, and controlling each mirror's pivot position to track the sun's elevation angle such that sunlight is accurately reflected onto the raised solar receiver at all times during daylight hours. In one embodiment the mirror array is disposed on a roundabout-type platform whose rotational position is controlled to track the sun's azimuth angle and the raised receiver is maintained at a substantially fixed position relative to the mirror array for all rotational positions of the platform.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Patrick C. Cheung, Patrick Y. Maeda
  • Patent number: 8305505
    Abstract: An optically based transport system and method for transporting particles across a virtual electrode array are disclosed. The system comprises a photoconductor layer where optically induced electrodes are projected thereon through sequential light images in a traveling wave grid pattern in order to transport particles across the virtual electrode array with a traveling wave.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: November 6, 2012
    Assignees: Palo Alto Research Center Incorporated, Xerox Corporation
    Inventors: Meng H. Lean, Shu Chang, Patrick Y. Maeda, Jeng Ping Lu
  • Patent number: 8223433
    Abstract: A low-cost sunlight redirecting element including multiple substantially identical redirecting structures uniformly arranged and fixedly disposed on a base, where each redirecting structure includes multiple optical surface regions that are cooperatively formed and arranged such that, when the sunlight redirecting element is operably fixedly oriented relative to a stationary target with sunlight directed along an incident direction onto the redirecting structures, at least some of the sunlight is transmitted between the corresponding optical surface regions of each redirecting structure, and redirected from the corresponding optical surface regions toward the target's surface. The optical surface regions are shaped and arranged to redirect the sunlight toward the fixed target surface even when the sunlight's incident angle direction changes during the course of a year. A stationary sunlight redirecting system (e.g.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: July 17, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Matthew D. Eisaman, Patrick Y. Maeda
  • Publication number: 20120132255
    Abstract: A solar energy harvesting system including a sunlight concentrating member (e.g., a lens array) for focusing direct sunlight at predetermined focal points inside a waveguide containing a stimuli-responsive material (SRM) that is evenly distributed throughout the waveguide material such that the SRM assumes a relatively high transparency state away from the focused sunlight, and small light-scattering portions of the SRM change to a relatively opaque (light scattering) state only in focal zone regions adjacent to the concentrated sunlight. The outer waveguide surfaces are locally parallel (e.g., planar) and formed such that sunlight scattered by the light-scattering SRM portions is transmitted by total internal reflection through the remaining transparent waveguide material, and outcoupled to one or more solar energy receivers (e.g., PV cells) that are disposed outside the waveguide (e.g., along the peripheral edge).
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Gregory L. Whiting, Joerg Martini, David K. Fork, Patrick Y. Maeda
  • Publication number: 20120120332
    Abstract: An optically based transport system and method for transporting particles across a virtual electrode array are disclosed. The system comprises a photoconductor layer where optically induced electrodes are projected thereon through sequential light images in a traveling wave grid pattern in order to transport particles across the virtual electrode array with a traveling wave.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 17, 2012
    Applicants: XEROX CORPORATION, PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Meng H. Lean, Shu Chang, Patrick Y. Maeda, Jeng Ping Lu
  • Publication number: 20120031463
    Abstract: A low-cost system for increasing the electricity generation of flat panel photovoltaic (PV) farms in which sunlight redirecting elements are positioned in offset spaces provided between adjacent panel assemblies and serve to redirect otherwise unused sunlight onto solar cells disposed on one of the panel assemblies. The redirecting elements are located in a prismatic volume bounded at its upper end by an inclined upper plane that extends across the offset space separating adjacent PV panel assemblies. The redirecting elements are either mounted to at least one of the PV panel assemblies, or placed on the ground between the assemblies. Each redirecting element includes multiple reflecting and/or refracting surfaces that utilize a disclosed microoptical arrangement (e.g., focus and steer or reorient and scatter) to distribute the redirected sunlight in a substantially homogenous (uniform) distribution on the solar cells.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Matthew D. Eisaman, Patrick Y. Maeda
  • Publication number: 20120033301
    Abstract: A low-cost sunlight redirecting element including multiple substantially identical redirecting structures uniformly arranged and fixedly disposed on a base, where each redirecting structure includes multiple optical surface regions that are cooperatively formed and arranged such that, when the sunlight redirecting element is operably fixedly oriented relative to a stationary target with sunlight directed along an incident direction onto the redirecting structures, at least some of the sunlight is transmitted between the corresponding optical surface regions of each redirecting structure, and redirected from the corresponding optical surface regions toward the target's surface. The optical surface regions are shaped and arranged to redirect the sunlight toward the fixed target surface even when the sunlight's incident angle direction changes during the course of a year. A stationary sunlight redirecting system (e.g.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Matthew D. Eisaman, Patrick Y. Maeda
  • Patent number: 8102582
    Abstract: A scanning optical system including an optical source configured to generate an ultra-short light pulse, a dispersion compensation system disposed such that the ultra-short light pulse travels through the dispersion compensation system, an optical deflector configured to rotate about an axis such that the ultra-short light pulse is deflected through a scan angle, and an f-theta scan lens having a group delay (GD) variation versus relative pupil height and group delay dispersion (GDD) variation versus the scan angle that are substantially minimized. The f-theta scan lens is disposed such that the ultra-short pulse is incident on the f-theta scan lens.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: January 24, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Patrick Y. Maeda
  • Publication number: 20110259397
    Abstract: A rotational trough reflector solar-electricity generation device includes a trough reflector that rotates around a substantially vertical axis. A strip-type photovoltaic (PV) device is fixedly mounted along the focal line of the trough reflector. A tracking system rotates the trough reflector such that the trough reflector is aligned generally parallel to the incident sunlight (e.g., in a generally east-west direction at sunrise, turning to generally north-south at noon, and turning generally west-east at sunset). A disc-shaped support structure is used to distribute the reflector's weight over a larger area and to minimize the tracking system motor size. Multiple trough reflectors are mounted on the disc-shaped support to maximize power generation.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 27, 2011
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Patrick C. Cheung, Patrick Y. Maeda
  • Patent number: 8040609
    Abstract: A self-adjusting solar light transmission (daylighting) apparatus includes a sunlight concentrating member (e.g., a lens array) for concentrating direct sunlight in focal zone regions disposed inside a sheet containing an evenly-distributed stimuli-responsive material (SRM) that has a relatively high transparency state in the absence of concentrated sunlight, and changes to a relatively opaque (light scattering or absorbing) state in small portions located in the focal zone regions in response to concentrated direct sunlight. Thereby, 80% or more of direct sunlight is prevented from passing through the apparatus, but 80% or more of diffuse light is passed. The outer sheet surfaces are locally parallel (e.g., planar) such that sunlight scattered by the light-scattering SRM portions is transmitted by total internal reflection through the remaining transparent sheet material, and outcoupled to one or more optional solar energy absorbing structures (e.g.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: October 18, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Gregory L. Whiting, Joerg Martini, David K. Fork, Patrick Y. Maeda
  • Publication number: 20110100419
    Abstract: A linear concentrating solar collector includes two trough-type reflectors having respective curved reflective surfaces that define respective focal lines, and are connected along a common edge in a decentered arrangement such that the focal lines are parallel and spaced-apart, and such that solar radiation reflected by the curved reflective surfaces is concentrated and overlaps in a defocused state. In one embodiment a solar cell is disposed in the overlap region to receive the all of the reflected radiation from the curved reflective surfaces in a defocused state. An optional solid optical structure is used to support and position the trough-type reflectors and solar cell, and to facilitate self-forming of the curved reflective surfaces. In other embodiments, two solar cells are mounted on the rear surface of the optical element, and the curved reflective surfaces reflect sunlight at angles that produce total internal reflection of the sunlight onto the solar cells.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Applicant: Palo Alto Research Center Incorporated
    Inventor: Patrick Y. Maeda
  • Publication number: 20110100418
    Abstract: A concentrating solar collector includes a solid optical structure a flat front surface, and PV cells and a micro-faceted mirror array disposed on the opposing rear surface. The micro-faceted mirrors are arranged in a sawtooth arrangement to reflect sunlight toward the front surface at angles that produces total internal reflection (TIR) and redirection of the sunlight onto the PV cells. The micro-faceted mirror array reflects sunlight onto the PV cells in an extended focus region of concentrated light that has a substantially uniform or homogeneous irradiance distribution pattern. The optical structure is a solid dielectric sheet either processed to include micro-faceted surfaces with reflective material formed thereon, or having a dielectric film including the micro-faceted mirror array adhered thereon. In one embodiment, three PV cells and four micro-faceted mirror arrays are disposed in an interleaved pattern with two side mirrors are disposed on side edges of the optical structure.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Patrick Y. Maeda, Patrick C. Cheung, Philipp H. Schmaelzle
  • Patent number: 7911668
    Abstract: A scanning optical system including an optical source configured to generate an ultra-short light pulse, a dispersion compensation system disposed such that the ultra-short light pulse travels through the dispersion compensation system, an optical deflector configured to rotate about an axis such that the ultra-short light pulse is deflected through a scan angle, and an f-theta scan lens having a group delay (GD) variation versus relative pupil height and group delay dispersion (GDD) variation versus the scan angle that are substantially minimized. The f-theta scan lens is disposed such that the ultra-short pulse is incident on the f-theta scan lens.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 22, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Patrick Y. Maeda
  • Patent number: 7906722
    Abstract: A Cassegrain-type concentrating solar collector cell includes primary and secondary mirrors disposed on opposing convex and concave surfaces of a light-transparent (e.g., glass) optical element. Light enters an aperture surrounding the secondary mirror, and is reflected by the primary mirror toward the secondary mirror, which re-reflects the light onto a photovoltaic cell mounted on a central region surrounded by the convex surface. The primary and secondary mirrors are preferably formed as mirror films that are deposited or plated directly onto the optical element. A concentrating solar collector array includes a sheet-like optical panel including multiple optical elements arranged in rows. The photovoltaic cells are mounted directly onto the optical panel, and the primary mirrors of the individual collector cells include metal film segments that are coupled by the photovoltaic cells to facilitate transmission of the generated electrical energy.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: March 15, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: David K. Fork, Patrick Y. Maeda
  • Publication number: 20110058241
    Abstract: A scanning optical system including an optical source configured to generate an ultra-short light pulse, a dispersion compensation system disposed such that the ultra-short light pulse travels through the dispersion compensation system, an optical deflector configured to rotate about an axis such that the ultra-short light pulse is deflected through a scan angle, and an f-theta scan lens having a group delay (GD) variation versus relative pupil height and group delay dispersion (GDD) variation versus the scan angle that are substantially minimized. The f-theta scan lens is disposed such that the ultra-short pulse is incident on the f-theta scan lens.
    Type: Application
    Filed: November 15, 2010
    Publication date: March 10, 2011
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventor: Patrick Y. Maeda
  • Patent number: 7855335
    Abstract: A concentrating solar collector that utilizes a solar collector optical system to concentrate solar light onto a PV cell (image plane), wherein the solar collector optical system includes an array of first optical elements that divide the solar light into separate beams, and a secondary optical system that integrates (superimposes) the separate beams in a defocused state at the image plane, thereby forming a uniform light distribution pattern on the PV cell. The secondary optical system is positioned at a distance from the aperture plane, whereby the rays of each separate beam leaving the secondary optical element are parallel. The image plane (PV cell) is located at the back focal point of the second image element, whereby all of the separate beams are superimposed on the PV cell in a defocused state. Optional intervening third optical elements are used to increase the acceptance angle.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: December 21, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Patrick Y. Maeda
  • Publication number: 20100206302
    Abstract: A rotational trough reflector solar-electricity generation device includes a trough reflector that rotates around a substantially vertical axis. A strip-type photovoltaic (PV) device, or other solar-energy collection element, is fixedly mounted along the focal line of the trough reflector. A tracking system rotates the trough reflector such that the trough reflector is aligned generally parallel to the incident sunlight (e.g., in a generally east-west direction at sunrise, turning to generally north-south at noon, and turning generally west-east at sunset). A disc-shaped support structure is used to distribute the reflector's weight over a larger area and to minimize the tracking system motor size. Multiple trough reflectors are mounted on the disc-shaped support to maximize power generation. Flat mirrors are disposed at the end of the troughs to increase power in “hot” PV sections that are connected in series.
    Type: Application
    Filed: May 27, 2009
    Publication date: August 19, 2010
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Patrick C. Cheung, Patrick Y. Maeda
  • Publication number: 20100206379
    Abstract: A rotational trough reflector solar-electricity generation device includes a trough reflector that rotates around a substantially vertical axis and includes a solid optical element having a linear parabolic convex surface that serves as a base for automatically positioning a mirror to focus sunlight onto a focal line, and a flat aperture surface that serves to support a strip-type photovoltaic (PV) receiver on the focal line. A tracking system rotates the trough reflector such that the trough reflector is aligned generally parallel to the incident sunlight (e.g., in a generally east-west direction at sunrise, turning to generally north-south at noon, and turning generally west-east at sunset). A disc-shaped support structure is used to distribute the reflector's weight over a larger area and to minimize the tracking system motor size. Multiple trough reflectors are mounted on the disc-shaped support to maximize power generation.
    Type: Application
    Filed: November 3, 2009
    Publication date: August 19, 2010
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Karl A. Littau, Patrick Y. Maeda, Patrick C. Cheung
  • Publication number: 20100206357
    Abstract: A two-part solar energy collection system for installation on a planar support surface (e.g., a rooftop) includes a permanent positioning component including a base structure and a replaceable solar collector component including solar energy collection elements fixedly mounted on a support frame. Each collection element includes an optical element arranged to focus solar radiation onto a focal line, and a linearly-arranged solar energy collector (e.g., PV cells) fixedly maintained on the focal line. The replaceable solar collector component is secured to a rotating platform of the base structure such that the focal lines of the solar energy collection elements are maintained in a plane that is substantially parallel to the support surface, and the rotating platform and replaceable solar collector component are collectively pivoted by a positioning system around a rotational axis to align the PV cells) parallel to the received sunlight beams.
    Type: Application
    Filed: November 3, 2009
    Publication date: August 19, 2010
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Karl A. Littau, Patrick Y. Maeda, Patrick C. Cheung
  • Publication number: 20100206356
    Abstract: A rotational trough reflector solar-electricity generation device includes a trough reflector that rotates around a substantially vertical axis. A strip-type photovoltaic (PV) device is fixedly mounted along the focal line of the trough reflector. A tracking system rotates the trough reflector such that the trough reflector is aligned generally parallel to the incident sunlight (e.g., in a generally east-west direction at sunrise, turning to generally north-south at noon, and turning generally west-east at sunset). A disc-shaped support structure is used to distribute the reflector's weight over a larger area and to minimize the tracking system motor size. Multiple trough reflectors are mounted on the disc-shaped support to maximize power generation.
    Type: Application
    Filed: February 18, 2009
    Publication date: August 19, 2010
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Patrick C. Cheung, Patrick Y. Maeda