Patents by Inventor Patryk GUMANN

Patryk GUMANN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210076530
    Abstract: Devices, systems, methods, and computer-implemented methods to facilitate employing thermalizing materials in an enclosure for quantum computing devices are provided. According to an embodiment, a system can comprise a quantum computing device and an enclosure having the quantum computing device disposed within the enclosure. The system can further comprise a thermalizing material disposed within the enclosure, with the thermalizing material being adapted to thermally link a cryogenic device to the quantum computing device.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventors: Sean Hart, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Patryk Gumann, Salvatore Bernardo Olivadese
  • Publication number: 20210068320
    Abstract: Techniques regarding shielding one or more superconducting devices are provided. For example, one or more embodiments described herein can comprise an apparatus, which can comprise a multi-layer enclosure that shields a superconducting device from a magnetic field and radiation. Further, the multi-layer enclosure can comprise a superconducting material layer that can have a thickness that inhibits a penetration of the multi-layer enclosure by the magnetic field. The multi-layer enclosure can also comprise a metal layer adjacent to the superconducting material layer. The metal layer can have a high thermal conductivity that achieves thermalization with the superconducting material layer. Moreover, the multi-layer enclosure can comprise a radiation shield layer adjacent to the superconducting material layer.
    Type: Application
    Filed: August 30, 2019
    Publication date: March 4, 2021
    Inventors: Daniela Florentina Bogorin, Sean Hart, Patryk Gumann, Nicholas Torleiv Bronn, Salvatore Bernardo Olivadese, Oblesh Jinka
  • Publication number: 20210043823
    Abstract: A gated Josephson junction includes a substrate and a vertical Josephson junction formed on the substrate and extending substantially normal the substrate. The vertical Josephson junction includes a first superconducting layer, a semiconducting layer, and a second superconducting layer. The first superconducting layer, the semiconducting layer, and the second superconducting layer form a stack that is substantially perpendicular to the substrate. The gated Josephson junction includes a gate dielectric layer in contact with the first superconducting layer, the semiconducting layer, and the second superconducting layer at opposing side surfaces of the vertical Josephson junction, and a gate electrically conducting layer in contact with the gate dielectric layer. The gate electrically conducting layer is separated from the vertical Josephson junction by the gate dielectric layer.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 11, 2021
    Inventors: Devendra K. Sadana, Ning Li, Stephen W. Bedell, Sean Hart, Patryk Gumann
  • Publication number: 20210028345
    Abstract: A superconducting coupling device includes a resonator structure. The resonator structure has a first end configured to be coupled to a first device and a second end configured to be coupled to a second device. The device further includes an electron system coupled to the resonator structure, and a gate positioned proximal to a portion of the electron system. The electron system and the gate are configured to interrupt the resonator structure at one or more predetermined locations forming a switch. The gate is configured to receive a gate voltage and vary an inductance of the electron system based upon the gate voltage. The varying of the inductance induces the resonator structure to vary a strength of coupling between the first device and the second device.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Applicant: International Business Machines Corporation
    Inventors: Sean Hart, Jay M. Gambetta, Patryk Gumann
  • Patent number: 10903541
    Abstract: A hybrid microwave attenuator is constructed by forming a circuit and a housing. The circuit has two ports, a resistive component configured to attenuate some frequencies in an input signal (transmitted signal), and a dispersive component configured to attenuate some frequencies within a frequency range. The resistive component and the dispersive component are arranged in a series configuration relative to one another between the two ports of the circuit. The housing includes a closable structure in which the circuit is positioned, the structure being formed of a material that exhibits at least a threshold level of thermal conductivity, where the threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum computing circuit operates. The housing further includes a pair of microwave connectors, the pair of connectors being thermally coupled to the housing.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: January 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Baleegh Abdo, Patryk Gumann
  • Patent number: 10897069
    Abstract: An architecture for, and techniques for fabricating, a thermal decoupling device are provided. In some embodiments, thermal decoupling device can be included in a thermally decoupled cryogenic microwave filter. In some embodiments, the thermal decoupling device can comprise a dielectric material and a conductive line. The dielectric material can comprise a first channel that is separated from a second channel by a wall of the dielectric material. The conductive line can comprise a first segment and a second segment that are separated by the wall. The wall can facilitate propagation of a microwave signal between the first segment and the second segment and can reduce heat flow between the first segment and the second segment of the conductive line.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: January 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Patryk Gumann, Salvatore Bernardo Olivadese
  • Publication number: 20210013570
    Abstract: An architecture for, and techniques for fabricating, a cryogenic microwave filter having reduced Kapitza resistance are provided. In some embodiments, the cryogenic microwave filter can comprise a substrate and a conductive line. The substrate can be formed of a material having a thermal conductivity property that sufficiently reduces Kapitza resistance in the cryogenic environment. The conductive line can be formed in a recess of the substrate and facilitate a filter operation on a microwave signal propagated in a cryogenic environment. In some embodiments, the conductive line can be formed according to a sintering technique that can reduce Kapitza resistance.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 14, 2021
    Inventors: Patryk Gumann, Salvatore Bernardo Olivadese
  • Patent number: 10891251
    Abstract: In an embodiment, a device includes a first high density interface in a first dilution fridge stage configured to receive a first set of transmission lines. In an embodiment, a device includes a second high density interface in a second dilution fridge stage configured to receive a second set of transmission lines. In an embodiment, a device includes a printed circuit board configured to transfer microwave signals between a first dilution fridge stage and the second dilution fridge stage, the first high density interface and the second high density interface coupled to the printed circuit board.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 12, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Salvatore Bernardo Olivadese, Patryk Gumann, Nicholas T. Bronn
  • Publication number: 20210003457
    Abstract: Techniques regarding determining the temperature of one or more quantum computing devices are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a temperature component that can determine a temperature of a superconducting resonator based on a frequency shift exhibited by the superconducting resonator due to a change in kinetic inductance with a change in temperature.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Inventors: Salvatore Bernardo Olivadese, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Publication number: 20210003456
    Abstract: Techniques regarding determining and/or analyzing temperature distributions experienced by quantum computer devices during operation are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a region component that can define a plurality of temperature regions from a quantum computing device layout. The computer executable component can also comprise a map component that can generate a map that characterizes a temperature distribution by determining at least one temperature achieved within the plurality of temperature regions during an operation of the quantum computing device layout.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Inventors: Salvatore Bernardo Olivadese, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Patent number: 10886585
    Abstract: An architecture for, and techniques for fabricating, a cryogenic microwave filter having reduced Kapitza resistance are provided. In some embodiments, the cryogenic microwave filter can comprise a substrate and a conductive line. The substrate can be formed of a material having a thermal conductivity property that sufficiently reduces Kapitza resistance in the cryogenic environment. The conductive line can be formed in a recess of the substrate and facilitate a filter operation on a microwave signal propagated in a cryogenic environment. In some embodiments, the conductive line can be formed according to a sintering technique that can reduce Kapitza resistance.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Patryk Gumann, Salvatore Bernardo Olivadese
  • Patent number: 10886586
    Abstract: A hybrid microwave attenuator is constructed by forming a circuit and a housing. The circuit has two ports, a resistive component configured to attenuate some frequencies in an input signal (transmitted signal), and a dispersive component configured to attenuate some frequencies within a frequency range. The resistive component and the dispersive component are arranged in a series configuration relative to one another between the two ports of the circuit. The housing includes a closable structure in which the circuit is positioned, the structure being formed of a material that exhibits at least a threshold level of thermal conductivity, where the threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum computing circuit operates. The housing further includes a pair of microwave connectors, the pair of connectors being thermally coupled to the housing.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Baleegh Abdo, Patryk Gumann
  • Publication number: 20200412457
    Abstract: A system for optical transduction of quantum information includes a qubit chip including a plurality of data qubits configured to operate at microwave frequencies, and a transduction chip spaced apart from the qubit chip, the transduction chip including a microwave-to-optical frequency transducer. The system includes an interposer coupled to the qubit chip and the transduction chip, the interposer including a dielectric material including a plurality of superconducting microwave waveguides formed therein. The plurality of superconducting microwave waveguides is configured to transmit quantum information from the plurality of data qubits to the microwave-to-optical frequency transducer on the transduction chip, and the microwave-to-optical frequency transducer is configured to transduce the quantum information from the microwave frequencies to optical frequencies.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese, Jason S. Orcutt
  • Publication number: 20200404806
    Abstract: A thermalization structure is formed using a cover configured with a set of pillars, the cover being a part of a cryogenic enclosure of a low temperature device (LTD). A chip including the LTD is configured with a set of cavities, a cavity in the set of cavities having a cavity profile. A pillar from the set of pillars and corresponding to the cavity has a pillar profile such that the pillar profile causes the pillar to couple with the cavity of the cavity profile within a gap tolerance to thermally couple the chip to the cover for heat dissipation in a cryogenic operation of the chip.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Applicant: International Business Machines Corporation
    Inventors: Oblesh Jinka, Salvatore Bernardo Olivadese, Sean Hart, Nicholas Torleiv Bronn, Jerry M. Chow, Markus Brink, Patryk Gumann, Daniela Florentina Bogorin
  • Publication number: 20200394546
    Abstract: A system for transmission of quantum information for quantum error correction includes an ancilla qubit chip including a plurality of ancilla qubits, and a data qubit chip spaced apart from the ancilla qubit chip, the data qubit chip including a plurality of data qubits. The system includes an interposer coupled to the ancilla qubit chip and the data qubit chip, the interposer including a dielectric material and a plurality of superconducting structures formed in the dielectric material. The superconducting structures enable transmission of quantum information between the plurality of data qubits on the data qubit chip and the plurality of ancilla qubits on the ancilla qubit chip via virtual photons for quantum error correction.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Publication number: 20200381608
    Abstract: Devices and methods that can facilitate vertical dispersive readout of qubits of a lattice surface code architecture are provided. According to an embodiment, a device can comprise a first substrate that can have a first side and a second side that can be opposite the first side. The first substrate can comprise a read pad that can be located on the first side and a readout resonator that can be located on the second side. The device can further comprise a second substrate that can be connected to the first substrate. The second substrate can comprise a qubit. In some embodiments, the device can further comprise a recess that can be located on the first side of the first substrate. The recess can comprise the read pad.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Salvatore Bernardo Olivadese, Patryk Gumann, Jay M. Gambetta
  • Publication number: 20200363014
    Abstract: A vacuum vessel supporting superconducting computing device environments includes a vacuum vessel having a cylindrical chamber defined by an internal frame, including upper and lower mounting rings, and at least two vertical support members disposed between the upper and lower mounting rings. The chamber is further defined by an upper plate releasably attached to the upper mounting ring, a lower plate releasably attached to the lower mounting plate, at least two side walls releasably attached to the upper mounting ring, the lower mounting ring and at least two vertical support members. Seal elements are disposed between the upper plate and the upper mounting ring, the lower plate and the lower mounting ring, and each side wall and the internal frame.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 19, 2020
    Inventors: Sean Hart, Valerio A. Grendanin, Patryk Gumann
  • Publication number: 20200357975
    Abstract: A device includes a first substrate formed of a first material that exhibits a threshold level of thermal conductivity. The threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum circuit operates. In an embodiment, the device also includes a second substrate disposed in a recess of the first substrate, the second substrate formed of a second material that exhibits a second threshold level of thermal conductivity. The second threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum circuit operates. In an embodiment, at least one qubit is disposed on the second substrate. In an embodiment, the device also includes a transmission line configured to carry a microwave signal between the first substrate and the second substrate.
    Type: Application
    Filed: June 18, 2020
    Publication date: November 12, 2020
    Applicant: International Business Machines Corporation
    Inventors: Patryk Gumann, Salvatore Bernardo Olivadese, Jerry M. Chow
  • Publication number: 20200358159
    Abstract: An on-chip microwave filter circuit includes a substrate formed of a first material that exhibits at least a threshold level of thermal conductivity, wherein the threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum computing circuit operates. The filter circuit further includes a dispersive component configured to filter a plurality of frequencies in an input signal, the dispersive component including a first transmission line disposed on the substrate, the first transmission line being formed of a second material that exhibits at least a second threshold level of thermal conductivity, where the second threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum computing circuit operates. The dispersive component further includes a second transmission line disposed on the substrate, the second transmission line being formed of the second material.
    Type: Application
    Filed: July 30, 2020
    Publication date: November 12, 2020
    Applicant: International Business Machines Corporation
    Inventors: Patryk Gumann, Salvatore B. Olivadese, Markus Brink
  • Patent number: 10833384
    Abstract: The technology described herein is directed towards microwave attenuators, and more particularly to a cryogenic microwave attenuator device for quantum technologies. In some embodiments, a device can comprise a cryogenic microwave attenuator device. The cryogenic microwave attenuator device can comprise: a housing component and a microwave attenuator chip, wherein the housing component can have thermal conductivity of about at least 0.1 Watts per meter-Kelvin at 1 degree Kelvin. The cryogenic microwave attenuator device can also comprise a microwave connector comprising a signal conductor that is direct wire coupled to the microwave attenuator chip.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Patryk Gumann, Salvatore Bernardo Olivadese, Robert Meinel, Christopher Surovic, Raymond A. Watters, Jerry M. Chow, Jay M. Gambetta, David C. Mckay