Patents by Inventor Paul Janis Timans

Paul Janis Timans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7957926
    Abstract: A method and system for calibrating temperature measurement devices, such as pyrometers, in thermal processing chambers are disclosed. According to the present invention, the system includes a calibrating light source that emits light energy onto a substrate contained in the thermal processing chamber. A light detector then detects the amount of light that is being transmitted through the substrate. The amount of detected light energy is then used to calibrate a temperature measurement device that is used in the system.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: June 7, 2011
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 7949237
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: May 24, 2011
    Assignee: Mattson Technology, Inc.
    Inventors: Zion Koren, Conor Patrick O'Carroll, Shuen Chun Choy, Paul Janis Timans, Rudy Santo Tomas Cardema, James Tsuneo Taoka, Arieh A. Strod
  • Patent number: 7847218
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 7, 2010
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Publication number: 20100252547
    Abstract: An approach for optimizing the thermal budget during a pulsed heating process is disclosed. A heat sink or thermal transfer plate is configured and positioned near an object, such as a semiconductor wafer, undergoing thermal treatment. The heat sink is configured to enhance the thermal transfer rate from the object so that the object is rapidly brought down from the peak temperature after an energy pulse. High thermally-conductive material may be positioned between the plate and the object. The plate may include protrusions, ribs, holes, recesses, and other discontinuities to enhance heat transfer and avoid physical damage to the object during the thermal cycle. Additionally, the optical properties of the plate may be selected to allow for temperature measurements via energy measurements from the plate, or to provide for a different thermal response to the energy pulse. The plate may also allow for pre-heating or active cooling of the wafer.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 7, 2010
    Applicant: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Publication number: 20100232470
    Abstract: A method and system for calibrating temperature measurement devices, such as pyrometers, in thermal processing chambers are disclosed. According to the present invention, the system includes a calibrating light source that emits light energy onto a substrate contained in the thermal processing chamber. A light detector then detects the amount of light that is being transmitted through the substrate. The amount of detected light energy is then used to calibrate a temperature measurement device that is used in the system.
    Type: Application
    Filed: May 25, 2010
    Publication date: September 16, 2010
    Applicant: MATTSON TECHNOLOGY, INC.
    Inventor: Paul Janis Timans
  • Patent number: 7745762
    Abstract: An approach for optimizing the thermal budget during a pulsed heating process is disclosed. A heat sink or thermal transfer plate is configured and positioned near an object, such as a semiconductor wafer, undergoing thermal treatment. The heat sink is configured to enhance the thermal transfer rate from the object so that the object is rapidly brought down from the peak temperature after an energy pulse. High thermally-conductive material may be positioned between the plate and the object. The plate may include protrusions, ribs, holes, recesses, and other discontinuities to enhance heat transfer and avoid physical damage to the object during the thermal cycle. Additionally, the optical properties of the plate may be selected to allow for temperature measurements via energy measurements from the plate, or to provide for a different thermal response to the energy pulse. The plate may also allow for pre-heating or active cooling of the wafer.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: June 29, 2010
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Publication number: 20100151694
    Abstract: Plasma assisted low temperature radical oxidation is described. The oxidation is selective to metals or metal oxides that may be present in addition to the silicon being oxidized. Selectivity is achieved by proper selection of process parameters, mainly the ratio of H2 to O2 gas. The process window may be enlarged by injecting H2O steam into the plasma, thereby enabling oxidation of silicon in the presence of TiN and W, at relatively low temperatures. Selective oxidation is improved by the use of an apparatus having remote plasma and flowing radicals onto the substrate, but blocking ions from reaching the substrate.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Applicant: MATTSON TECHNOLOGY, INC.
    Inventors: Bruce W. Peuse, Yaozhi Hu, Paul Janis Timans, Guangcai Xing, Wilfried Lerch, Sing-Pin Tay, Stephen E. Savas, Georg Roters, Zsolt Nenyei, Ashok Sinha
  • Patent number: 7734439
    Abstract: A method and system for calibrating temperature measurement devices, such as pyrometers, in thermal processing chambers are disclosed. According to the present invention, the system includes a calibrating light source that emits light energy onto a substrate contained in the thermal processing chamber. A light detector then detects the amount of light that is being transmitted through the substrate. The amount of detected light energy is then used to calibrate a temperature measurement device that is used in the system.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: June 8, 2010
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Publication number: 20090245320
    Abstract: Methods and apparatus for wafer temperature measurement and calibration of temperature measurement devices may be based on determining the absorption of a layer in a semiconductor wafer. The absorption may be determined by directing light towards the wafer and measuring light reflected from the wafer from below the surface upon which the incident light impinges. Calibration wafers and measurement systems may be arranged and configured so that light reflected at predetermined angles to the wafer surface is measured and other light is not. Measurements may also be based on evaluating the degree of contrast in an image of a pattern in or on the wafer. Other measurements may utilize a determination of an optical path length within the wafer alongside a temperature determination based on reflected or transmitted light.
    Type: Application
    Filed: June 8, 2009
    Publication date: October 1, 2009
    Applicant: MATTSON TECHNOLOGY, INC.
    Inventor: Paul Janis Timans
  • Publication number: 20090242543
    Abstract: Temperature control in an RTP system can be improved by consideration of one or more witness structures different from the wafer (or other semiconductor object) being processed. For example, power coupling between the RTP heating system and witness structure can be used to adjust one or more control parameters, such as model definitions, that are used by the RTP system to control wafer heating. As another example, a stored trajectory of a desired witness structure temperature or other property can be used as a basis for control during a processing cycle. Thus, the witness structure may be controlled “closed-loop” while the wafer is heated “open-loop.” As a further example, a heat flux between the RTP heating system and witness structure can be used to determine radiant energy from the heating system that is incident on the witness structure. One or more control actions can be taken based on this incident energy.
    Type: Application
    Filed: April 1, 2008
    Publication date: October 1, 2009
    Inventors: Zsolt Nenyei, Paul Janis Timans
  • Publication number: 20090161724
    Abstract: The temperature of an object such as a semiconductor wafer that includes silicon can be determined based on the variation of the optical absorption coefficient of silicon with temperature. Temperatures above about 850° C., can be found by measuring phenomena that are affected by the magnitude of the optical absorption coefficient, especially at wavelengths >˜1 ?m. Phenomena could include measuring light reflected, transmitted, emitted, absorbed, or scattered by the wafer and deriving the absorption coefficient from the measurements and then deriving temperature from the absorption coefficient. Temperature could be determined from a model relating phenomena directly to temperature, the model constructed based on absorption behaviour and techniques discussed herein. The resulting temperature could be used to calibrate or control a rapid thermal processing chamber or other apparatus.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: MATTSON TECHNOLOGY, INC.
    Inventor: Paul Janis Timans
  • Patent number: 7543981
    Abstract: Methods and apparatus for wafer temperature measurement and calibration of temperature measurement devices may be based on determining the absorption of a layer in a semiconductor wafer. The absorption may be determined by directing light towards the wafer and measuring light reflected from the wafer from below the surface upon which the incident light impinges. Calibration wafers and measurement systems may be arranged and configured so that light reflected at predetermined angles to the wafer surface is measured and other light is not. Measurements may also be based on evaluating the degree of contrast in an image of a pattern in or on the wafer. Other measurements may utilize a determination of an optical path length within the wafer alongside a temperature determination based on reflected or transmitted light.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: June 9, 2009
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Publication number: 20090098742
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
    Type: Application
    Filed: November 13, 2008
    Publication date: April 16, 2009
    Applicant: MATTSON TECHNOLOGY, INC.
    Inventor: Paul Janis Timans
  • Patent number: 7453051
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: November 18, 2008
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 7358462
    Abstract: A method and apparatus for heating semiconductor wafers in thermal processing chambers is disclosed. The apparatus includes a non-contact temperature measurement system that utilizes radiation sensing devices, such as pyrometers, to determine the temperature of the wafer during processing. The radiation sensing devices determine the temperature of the wafer by monitoring the amount of radiation being emitted by the wafer at a particular wavelength. In accordance with the present invention, a spectral filter is included in the apparatus for filtering light being emitted by lamps used to heat the wafer at the wavelength at which the radiation sensing devices operate. The spectral filter includes a light absorbing agent such as a rare earth element, an oxide of a rare earth element, a light absorbing dye, a metal, or a semiconductor material.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: April 15, 2008
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Publication number: 20080002753
    Abstract: Methods and apparatus for wafer temperature measurement and calibration of temperature measurement devices may be based on determining the absorption of a layer in a semiconductor wafer. The absorption may be determined by directing light towards the wafer and measuring light reflected from the wafer from below the surface upon which the incident light impinges. Calibration wafers and measurement systems may be arranged and configured so that light reflected at predetermined angles to the wafer surface is measured and other light is not. Measurements may also be based on evaluating the degree of contrast in an image of a pattern in or on the wafer. Other measurements may utilize a determination of an optical path length within the wafer alongside a temperature determination based on reflected or transmitted light.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Inventor: Paul Janis Timans
  • Patent number: 7269343
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: September 11, 2007
    Assignee: Mattson Technology, Inc.
    Inventors: Zion Koren, Conor Patrick O'Carroll, Shuen Chun Choy, Paul Janis Timans, Rudy Santo Tomas Cardema, James Tsuneo Taoka, Arieh A. Strod
  • Patent number: 7135656
    Abstract: A method and apparatus for heating semiconductor wafers in thermal processing chambers. The apparatus includes a non-contact temperature measurement system that utilizes radiation sensing devices, such as pyrometers, to determine the temperature of the wafer during processing. The radiation sensing devices determine the temperature of the wafer by monitoring the amount of radiation being emitted by the wafer at a particular wavelength. In accordance with the present invention, a spectral filter is included in the apparatus for filtering light being emitted by lamps used to heat the wafer at the wavelength at which the radiation sensing devices operate. The spectral filter includes a light absorbing agent such as a rare earth element, an oxide of a rare earth element, a light absorbing dye, a metal, or a semiconductor material.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: November 14, 2006
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 7015422
    Abstract: Various processes for heating semiconductor wafers is disclosed. In particular, the present invention is directed to configuring light sources emitting light energy onto a wafer in order to optimize absorption of the energy by the wafer. Optimization is carried out by varying the angle of incidence of the light energy contacting the wafer, using multiple wavelengths of light, and configuring the light energy such that it contacts the wafer in a particular polarized state. In one embodiment, the light energy can be emitted by a laser that is scanned over the surface of the wafer.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: March 21, 2006
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 6970644
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 29, 2005
    Assignee: Mattson Technology, Inc.
    Inventors: Zion Koren, Conor Patrick O'Carroll, Shuen Chun Choy, Paul Janis Timans, Rudy Santo Tomas Cardema, James Tsuneo Taoka, Arieh A. Strod