Patents by Inventor Pavel Belik

Pavel Belik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975867
    Abstract: In one possible embodiment, a UAV payload module retraction mechanism is provided including a payload pivotally attached to a housing. A biasing member is mounted to bias the payload out of the housing and a winch is attached to the payload. An elongated flexible drawing member is coupled between the housing and the winch, the elongated drawing flexible member being capable of being drawn by the winch to retract the payload within the housing.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: May 7, 2024
    Assignee: AeroVironment, Inc.
    Inventors: John Peter Zwaan, Pavel Belik, Manolis Dimotakis, Christopher J. D'Aquila
  • Publication number: 20240124124
    Abstract: A motor assembly that includes a motor having a motor casing, a rotatable shaft extending from said motor casing to a shaft length and a hub coupled to said rotatable shaft, the hub having a circumferential skid surface disposed immediately proximal to the motor casing and having a channel configured to seat a propeller, when a propeller is present, wherein a bending moment applied to the shaft through the hub results in the circumferential skid surface contacting said motor casing.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 18, 2024
    Inventors: Emil Ghapgharan, Lane Dalan, Pavel Belik, Christopher Eugene Fisher, Austin Craig Gunder
  • Publication number: 20240096225
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 21, 2024
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Patent number: 11873074
    Abstract: A motor assembly that includes a motor having a motor casing, a rotatable shaft extending from said motor casing to a shaft length and a hub coupled to said rotatable shaft, the hub having a circumferential skid surface disposed immediately proximal to the motor casing and having a channel configured to seat a propeller, when a propeller is present, wherein a bending moment applied to the shaft through the hub results in the circumferential skid surface contacting said motor casing.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: January 16, 2024
    Assignee: AEROVIRONMENT, INC.
    Inventors: Emil Ghapgharan, Lane Dalan, Pavel Belik, Christopher Eugene Fisher, Austin Craig Gunder
  • Patent number: 11837102
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: December 5, 2023
    Assignee: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Publication number: 20230286642
    Abstract: Systems, devices, and methods for an extruded wing protection and control surface comprising: a channel proximate a leading edge of the control surface, a knuckle disposed about the channel, a leading void, a trailing void, and a separator dividing the leading void and the trailing void; and a plurality of notches disposed in the extruded control surface proximate the leading edge of the control surface.
    Type: Application
    Filed: November 22, 2022
    Publication date: September 14, 2023
    Inventors: Pavel Belik, John Peter Zwaan
  • Publication number: 20230227145
    Abstract: A motor assembly that includes a motor having a motor casing, a rotatable shaft extending from said motor casing to a shaft length and a hub coupled to said rotatable shaft, the hub having a circumferential skid surface disposed immediately proximal to the motor casing and having a channel configured to seat a propeller, when a propeller is present, wherein a bending moment applied to the shaft through the hub results in the circumferential skid surface contacting said motor casing.
    Type: Application
    Filed: March 6, 2023
    Publication date: July 20, 2023
    Inventors: Emil Ghapgharan, Lane Dalan, Pavel Belik, Christopher Eugene Fisher, Austin Craig Gunder
  • Publication number: 20230202678
    Abstract: In one possible embodiment, a UAV payload module retraction mechanism is provided including a payload pivotally attached to a housing. A biasing member is mounted to bias the payload out of the housing and a winch is attached to the payload. An elongated flexible drawing member is coupled between the housing and the winch, the elongated drawing flexible member being capable of being drawn by the winch to retract the payload within the housing.
    Type: Application
    Filed: January 10, 2023
    Publication date: June 29, 2023
    Applicant: AeroVironment, Inc.
    Inventors: John Peter Zwaan, Pavel Belik, Manolis Dimotakis, Christopher J. D'Aquila
  • Patent number: 11618549
    Abstract: A motor assembly that includes a motor having a motor casing, a rotatable shaft extending from said motor casing to a shaft length and a hub coupled to said rotatable shaft, the hub having a circumferential skid surface disposed immediately proximal to the motor casing and having a channel configured to seat a propeller, when a propeller is present, wherein a bending moment applied to the shaft through the hub results in the circumferential skid surface contacting said motor casing.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: April 4, 2023
    Assignee: AeroVironment, Inc.
    Inventors: Emil Ghapgharan, Lane Dalan, Pavel Belik, Christopher Eugene Fisher, Austin Craig Gunder
  • Patent number: 11554879
    Abstract: In one possible embodiment, a UAV payload module retraction mechanism is provided including a payload pivotally attached to a housing. A biasing member is mounted to bias the payload out of the housing and a winch is attached to the payload. An elongated flexible drawing member is coupled between the housing and the winch, the elongated drawing flexible member being capable of being drawn by the winch to retract the payload within the housing.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 17, 2023
    Assignee: AeroVironment, Inc.
    Inventors: John Peter Zwaan, Pavel Belik, Manolis Dimotakis, Christopher J. D'Aquila
  • Patent number: 11535361
    Abstract: Systems, devices, and methods for an extruded wing protection and control surface comprising: a channel proximate a leading edge of the control surface, a knuckle disposed about the channel, a leading void, a trailing void, and a separator dividing the leading void and the trailing void; and a plurality of notches disposed in the extruded control surface proximate the leading edge of the control surface.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: December 27, 2022
    Assignee: AEROVIRONMENT, INC.
    Inventors: Pavel Belik, John Peter Zwaan
  • Patent number: 11230374
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: January 25, 2022
    Assignee: AeroVironment, Inc.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Patent number: 11220170
    Abstract: A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: January 11, 2022
    Assignee: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Phillip T. Tokumaru, Marc L. Schmalzel, John Peter Zwaan, Jeremy D. Tyler, Justin B. McAllister, Gabriel E. Torres, Pavel Belik
  • Publication number: 20210209957
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Application
    Filed: October 19, 2020
    Publication date: July 8, 2021
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Patent number: 10941610
    Abstract: A water-tight or air-tight accessible compartment has a removable hatch sealed at the edge with elastically conformable opposing seals, with elongate communication elements extending into the compartment between the opposing seals, seals conforming to the topology formed between the compartment edge and the elongate communication elements.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: March 9, 2021
    Assignee: AeroVironment, Inc.
    Inventors: Ronald H. Olch, Pavel Belik
  • Publication number: 20210016896
    Abstract: In one possible embodiment, a UAV payload module retraction mechanism is provided including a payload pivotally attached to a housing. A biasing member is mounted to bias the payload out of the housing and a winch is attached to the payload. An elongated flexible drawing member is coupled between the housing and the winch, the elongated drawing flexible member being capable of being drawn by the winch to retract the payload within the housing.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 21, 2021
    Applicant: AeroVironment, Inc.
    Inventors: John Peter Zwaan, Pavel Belik, Manolis Dimotakis, Christopher J. D'Aquila
  • Publication number: 20210009265
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Application
    Filed: April 7, 2020
    Publication date: January 14, 2021
    Applicant: AEROVIRONMENT, INC.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Publication number: 20210001700
    Abstract: A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Phillip T. Tokumaru, Marc L. Schmalzel, John Peter Zwaan, Jeremy D. Tyler, Justin B. McAllister, Gabriel E. Torres, Pavel Belik
  • Publication number: 20200331584
    Abstract: Systems, devices, and methods for an extruded wing protection and control surface comprising: a channel proximate a leading edge of the control surface, a knuckle disposed about the channel, a leading void, a trailing void, and a separator dividing the leading void and the trailing void; and a plurality of notches disposed in the extruded control surface proximate the leading edge of the control surface.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 22, 2020
    Inventors: Pavel Belik, John Peter Zwaan
  • Patent number: 10810894
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 20, 2020
    Assignee: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik