Patents by Inventor Pavel Belik

Pavel Belik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180283860
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Application
    Filed: March 18, 2018
    Publication date: October 4, 2018
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Publication number: 20180186443
    Abstract: Systems, devices, and methods for an extruded wing protection and control surface comprising: a channel proximate a leading edge of the control surface, a knuckle disposed about the channel, a leading void, a trailing void, and a separator dividing the leading void and the trailing void; and a plurality of notches disposed in the extruded control surface proximate the leading edge of the control surface.
    Type: Application
    Filed: November 9, 2017
    Publication date: July 5, 2018
    Inventors: Pavel Belik, John Peter Zwaan
  • Patent number: 9957065
    Abstract: Liquid dispensing assemblies including adhesive anchoring assemblies configured to adhere to a support surface external to a device such as a vehicle. An air vehicle includes (a) a fluid adhesive container assembly detachably attached to the air vehicle, wherein the fluid adhesive container assembly comprises: (i) an adhesive container comprising fluid adhesive; and (ii) one or more fibers, wherein the one or more fibers are configured, or a brush of fibers, or a fabric of fibers, is configured to conduct the fluid adhesive and to structurally support an adhesive bond between the one or more fibers and a surface; and (b) means for dispensing the fluid adhesive from the fluid adhesive container, to the one or more fibers.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: May 1, 2018
    Assignee: AEROVIRONMENT, INC.
    Inventors: Christopher Eugene Fisher, John Peter Zwaan, David R. Thompson, Marc L. Schmalzel, Karl R. Klingbiel, Tyson R. Jensen, Pavel Belik, Eric James Aagaard
  • Publication number: 20180086480
    Abstract: In one possible embodiment, a UAV payload module retraction mechanism is provided including a payload pivotally attached to a housing. A biasing member is mounted to bias the payload out of the housing and a winch is attached to the payload. An elongated flexible drawing member is coupled between the housing and the winch, the elongated drawing flexible member being capable of being drawn by the winch to retract the payload within the housing.
    Type: Application
    Filed: December 1, 2017
    Publication date: March 29, 2018
    Applicant: AeroVironment, Inc.
    Inventors: John Peter Zwaan, Pavel Belik, Manolis Dimotakis, Christopher J. D'Aquila
  • Publication number: 20180043987
    Abstract: A motor assembly that includes a motor having a motor casing, a rotatable shaft extending from said motor casing to a shaft length and a hub coupled to said rotatable shaft, the hub having a circumferential skid surface disposed immediately proximal to the motor casing and having a channel configured to seat a propeller, when a propeller is present, wherein a bending moment applied to the shaft through the hub results in the circumferential skid surface contacting said motor casing.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 15, 2018
    Inventors: Emil Ghapgharan, Lane Dennis Dalan, Pavel Belik, Christopher Eugene Fisher, Austin Craig Gunder
  • Patent number: 9850004
    Abstract: In one possible embodiment, a UAV payload module retraction mechanism is provided including a payload pivotally attached to a housing. A biasing member is mounted to bias the payload out of the housing and a winch is attached to the payload. An elongated flexible drawing member is coupled between the housing and the winch, the elongated drawing flexible member being capable of being drawn by the winch to retract the payload within the housing.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 26, 2017
    Assignee: AeroVironment, Inc.
    Inventors: John Peter Zwaan, Pavel Belik, Manolis Dimotakis, Christopher J. D'Aquila
  • Patent number: 9776706
    Abstract: A motor assembly that includes a motor having a motor casing, a rotatable shaft extending from said motor casing to a shaft length and a hub coupled to said rotatable shaft, the hub having a circumferential skid surface disposed immediately proximal to the motor casing and having a channel configured to seat a propeller, when a propeller is present, wherein a bending moment applied to the shaft through the hub results in the circumferential skid surface contacting said motor casing.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: October 3, 2017
    Assignee: AEROVIRONMENT, INC.
    Inventors: Emil Ghapgharan, Lane Dennis Dalan, Pavel Belik, Christopher Eugene Fisher, Austin Craig Gunder
  • Publication number: 20170270807
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Application
    Filed: June 1, 2017
    Publication date: September 21, 2017
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Publication number: 20170219341
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Application
    Filed: December 4, 2016
    Publication date: August 3, 2017
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Patent number: 9672748
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: June 6, 2017
    Assignee: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Publication number: 20170051556
    Abstract: A water-tight or air-tight accessible compartment has a removable hatch sealed at the edge with elastically conformable opposing seals, with elongate communication elements extending into the compartment between the opposing seals, seals conforming to the topology formed between the compartment edge and the elongate communication elements.
    Type: Application
    Filed: August 26, 2016
    Publication date: February 23, 2017
    Applicant: AeroVironment, Inc.
    Inventors: Ronald H. OLCH, Pavel BELIK
  • Publication number: 20170021945
    Abstract: Liquid dispensing assemblies including adhesive anchoring assemblies configured to adhere to a support surface external to a device such as a vehicle. An air vehicle includes (a) a fluid adhesive container assembly detachably attached to the air vehicle, wherein the fluid adhesive container assembly comprises: (i) an adhesive container comprising fluid adhesive; and (ii) one or more fibers, wherein the one or more fibers are configured, or a brush of fibers, or a fabric of fibers, is configured to conduct the fluid adhesive and to structurally support an adhesive bond between the one or more fibers and a surface; and (b) means for dispensing the fluid adhesive from the fluid adhesive container, to the one or more fibers.
    Type: Application
    Filed: May 16, 2016
    Publication date: January 26, 2017
    Inventors: Christopher Eugene Fisher, John Peter Zwaan, David R. Thompson, Marc L. Schmalzel, Karl R. Klingbiel, Tyson R. Jensen, Pavel Belik, Eric James Aagaard
  • Publication number: 20160375999
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Application
    Filed: May 25, 2016
    Publication date: December 29, 2016
    Applicant: AeroVironment, Inc.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Patent number: 9511858
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: December 6, 2016
    Assignee: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Patent number: 9476251
    Abstract: A water-tight or air-tight accessible compartment has a removable hatch sealed at the edge with elastically conformable opposing seals, with elongate communication elements extending into the compartment between the opposing seals, seals conforming to the topology formed between the compartment edge and the elongate communication elements.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 25, 2016
    Assignee: AeroVironment, Inc.
    Inventors: Ronald H. Olch, Pavel Belik
  • Publication number: 20160251087
    Abstract: In one possible embodiment, a UAV payload module retraction mechanism is provided including a payload pivotally attached to a housing. A biasing member is mounted to bias the payload out of the housing and a winch is attached to the payload. An elongated flexible drawing member is coupled between the housing and the winch, the elongated drawing flexible member being capable of being drawn by the winch to retract the payload within the housing.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 1, 2016
    Applicant: AeroVironment, Inc.
    Inventors: John Peter Zwaan, Pavel Belik, Manolis Dimotakis, Christopher J. D'Aquila
  • Publication number: 20160221676
    Abstract: A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
    Type: Application
    Filed: November 23, 2015
    Publication date: August 4, 2016
    Applicant: AeroVironment Inc.
    Inventors: Christopher E. Fisher, Phillip T. Tokumaru, Marc L. Schmalzel, John Peter Zwaan, Jeremy D. Tyler, Justin B. McAllister, Gabriel Torres, Pavel Belik
  • Publication number: 20160214712
    Abstract: A flight control apparatus for fixed-wing aircraft includes a first port wing and first starboard wing, a first port swash plate coupled between a first port rotor and first port electric motor, the first port electric motor coupled to the first port wing, and a first starboard swash plate coupled between a first starboard rotor and first starboard electric motor, the first starboard electric motor coupled to the first starboard wing.
    Type: Application
    Filed: May 7, 2015
    Publication date: July 28, 2016
    Inventors: CHRISTOPHER EUGENE FISHER, JASON SIDHARTHADEV MUKHERJEE, WILLIAM ARDEN LOTT, PAVEL BELIK, BART DEAN HIBBS
  • Patent number: 9365088
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: June 14, 2016
    Assignee: AeroVironment, Inc.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Patent number: D813143
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: March 20, 2018
    Assignee: AeroVironment, Inc.
    Inventors: Pavel Belik, Andrew Logan, Henry Won, Jeremy Tyler