Patents by Inventor Peter E. Wu

Peter E. Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094233
    Abstract: The present invention relates to methods, devices and systems for associating consumable data with an assay consumable used in a biological assay. Provided are assay systems and associated consumables, wherein the assay system adjusts one or more steps of an assay protocol based on consumable data specific for that consumable. Various types of consumable data are described, as well as methods of using such data in the conduct of an assay by an assay system. The present invention also relates to consumables (e.g., kits and reagent containers), software, data deployable bundles, computer-readable media, loading carts, instruments, systems, and methods, for performing automated biological assays.
    Type: Application
    Filed: July 18, 2023
    Publication date: March 21, 2024
    Inventors: Jacob N. WOHLSTADTER, Manish KOCHAR, Peter J. BOSCO, Ian D. CHAMBERLIN, Bandele JEFFREY-COKER, Eric M. JONES, Gary I. KRIVOY, Don E. KRUEGER, Aaron H. LEIMKUEHLER, Pei-Ming WU, Kim-Xuan NGUYEN, Pankaj OBEROI, Louis W. PANG, Jennifer PARKER, Victor PELLICIER, Nicholas SAMMONS, George SIGAL, Michael L. VOCK, Stanley T. SMITH, Carl C. STEVENS, Rodger D. OSBORNE, Kenneth E. PAGE, Michael T. WADE, Jon WILLOUGHBY, Lei WANG, Xinri CONG, Kin NG
  • Publication number: 20170141419
    Abstract: A fire suppression system for producing oxygen-depleted air includes a fuel cell stack formed from a plurality of fuel cells for providing power to an associated load, and a controller coupled to the plurality of fuel cells, wherein the controller is configured to regulate current output from the plurality of fuel cells to maintain a prescribed percentage level of oxygen depleted air in an exhaust stream of the plurality of fuel cells. Further, a method for maintaining an updated polarization curve for a fuel cell includes commanding step-and-hold air flow commands and associated electrical current limit commands to the fuel cell system. Upon the fuel cell reaching each successive step-and-hold steady state condition, electrical current and voltage pairs are stored and plotted to form the real-time polarization curve.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 18, 2017
    Inventors: Peter E. Wu, Michel Loignon, Brian S. Burgess, Daniel C. Massie, Thomas C. O'Brien
  • Patent number: 8897974
    Abstract: A gear selector assembly for selecting a gear position of a transmission includes an internal mode switch having detent lever, a plurality of magnetic field sensors, a control module, a first power supply and a second power supply. The detent lever has a plurality of detents and a magnetized track, where the magnetized track includes a plurality of magnetized elements that are indicative a particular gear selector position. The magnetic field sensors are associated with each of the magnetized elements for sensing changes in a magnetic field of the magnetized track. The control module is in communication with each of the field sensors. Each of the field sensors sends an output current to the control module and the value of the output current is variable. The value of the output current is indicative of at least one of the following: the direction of the magnetic field from the corresponding magnetic track, a short circuit, and an open circuit.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: November 25, 2014
    Assignee: GM Global Technology Operations, LLC
    Inventors: Peter E. Wu, Richard E. Robinette, Mark A. Vernacchia, Jack P. Koski
  • Patent number: 8600605
    Abstract: A distributed on-board diagnostic (OBD) architecture for a control system of a vehicle includes a plurality of control modules that are in communication with one another and a designated master OBD control module that is one of the plurality of control modules. The master OBD control module performs functions that a remainder of the plurality of control modules are incapable of performing including at least one of arbitrating a malfunction indicator lamp (MIL) state, arbitrating and storing OBD freeze frame data and determining OBD status flags of the remainder of the plurality of control modules.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: December 3, 2013
    Assignees: Electronic Data Systems Corporation
    Inventors: Daniel P. Grenn, Marek L. Wilmanowicz, Aniket Kothari, Leonard G. Wozniak, Rick H. Schroeder, Andrew M. Zettel, Peter E. Wu, Wei D. Wang, Michael J. Taljonick, Jayanthi Padmanabhan
  • Patent number: 8393996
    Abstract: A vehicular powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine. A method for operating the powertrain includes monitoring operator inputs, monitoring a transmission output, and terminating an engine operating mode when a time-rate change in the transmission output exceeds a threshold absent a change in the monitored operator inputs.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: March 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Ryan D. Martini, Charles J. Van Horn, Peter E. Wu, Andrew M. Zettel, Osama Almasri, Jy-Jen F. Sah
  • Patent number: 8357074
    Abstract: A system for robust fault detection in an electrically variable, hydraulically controlled transmission includes independently monitoring hydraulic pressure within a hydraulic control circuit and electric machine rotation for detecting clutch state faults.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: January 22, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Peter E. Wu, Ryan D. Martini, Syed Naqi, Jy-Jen F. Sah, Osama Almasri, Hanne Buur, Andrew M. Zettel, Charles J. Van Horn
  • Patent number: 8348797
    Abstract: A transmission includes two blocking valves that control fluid pressure to a plurality of clutches. The blocking valves are characterized by a plurality of states that result in at least three transmission operating conditions. Each of the three operating conditions is characterized by fluid pressure being unavailable to a respective one of the plurality of clutches.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 8, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael D. Foster, Jy-Jen F. Sah, Peter E. Wu
  • Patent number: 8298116
    Abstract: Control of operation of a hybrid powertrain is provided, wherein mechanical power flow to an output is controlled through selective actuation of torque-transfer clutches. Electric machines are coupled to an energy storage system for electric power flow. The electro-mechanical transmission is operated in a continuously variable operating range state, and, operation of the transmission is monitored. Absence of a mismatch between the commanded continuously variable operating range state and an actual operating state of the transmission is determined. Presence of a mismatch between the commanded operating range state and the actual operating state of the transmission may be determined. Operation of the powertrain is modified when a mismatch between the commanded operating range state and the actual operating state of the transmission is detected.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: October 30, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Ryan D. Martini, Charles J Van Horn, Peter E. Wu, Andrew M. Zettel, Osama Almasri, Jy-Jen F. Sah
  • Patent number: 8290673
    Abstract: A system includes a friction element having a driving mechanism and a driven mechanism. At least one of the driving mechanism and the driven mechanism is configured to rotate. A drive unit is configured to provide a torque to at least one of the driving mechanism and the driven mechanism. A control processor is configured to diagnose a friction element failure based on a slip speed, which is the difference between rotational speeds of the driving mechanism and the driven mechanism. The control processor is further configured to induce a slip condition as part of a shift process and diagnose the friction element failure if the derived slip speed is substantially zero after inducing the slip condition.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 16, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Syed Naqi, Ali K. Naqvi, Lawrence A. Kaminsky, Jy-Jen F. Sah, James R. Bartshe, Peter E. Wu
  • Patent number: 8281885
    Abstract: A powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine to selectively transmit mechanical power to an output member. Powertrain operation includes monitoring operator inputs, and determining input speeds and changes in input speeds for the internal combustion engine and the electric machine. The input speeds are compared to threshold input speeds, and the changes in input speeds are compared to threshold changes in input speeds. Input torques of the internal combustion engine and the electric machine are reduced when any one of the input speeds and changes in input speeds exceeds the corresponding threshold.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: October 9, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Andrew M. Zettel, Charles J Van Horn, Peter E. Wu, Ryan D Martini, Anthony H. Heap
  • Patent number: 8209098
    Abstract: A method to monitor integrity of a signal output from an operator-manipulable transmission range selector for a powertrain system includes equipping the transmission range selector with a range encoder and a direction encoder, determining a range state and a direction state based upon signals from the range encoder and the direction encoder, determining a discrete position of the transmission range selector based upon the range state and the direction state, and performing back rationality to verify the discrete position of the transmission range selector.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 26, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Hanne Buur, Richard E. Robinette, Peter E. Wu
  • Publication number: 20120065855
    Abstract: A system includes a friction element having a driving mechanism and a driven mechanism. At least one of the driving mechanism and the driven mechanism is configured to rotate. A drive unit is configured to provide a torque to at least one of the driving mechanism and the driven mechanism. A control processor is configured to diagnose a friction element failure based on a slip speed, which is the difference between rotational speeds of the driving mechanism and the driven mechanism. The control processor is further configured to induce a slip condition as part of a shift process and diagnose the friction element failure if the derived slip speed is substantially zero after inducing the slip condition.
    Type: Application
    Filed: January 27, 2011
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Syed Naqi, Ali K. Naqvi, Lawrence A. Kaminsky, Jy-Jen F. Sah, James R. Bartshe, Peter E. Wu
  • Publication number: 20120035019
    Abstract: A vehicular powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine. A method for operating the powertrain includes monitoring operator inputs, monitoring a transmission output, and terminating an engine operating mode when a time-rate change in the transmission output exceeds a threshold absent a change in the monitored operator inputs.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ryan D. MARTINI, Charles J. VAN HORN, Peter E. WU, Andrew M. ZETTEL, Sam ALMASRI, Jy-Jen F. SAH
  • Patent number: 8100803
    Abstract: An electrically variable transmission (EVT) selectively establishes various EVT modes and a neutral mode. The EVT includes a source of pressurized fluid, fluid-actuated clutches, various solenoid-actuated valves including trim valves and blocking valves adapted to control a flow of pressurized fluid to the clutches to establish the transmission operating modes, and an electronic control unit (ECU). The ECU actuates different combinations of the solenoid-actuated valves to establish the different transmission modes. The solenoid-actuated valves are configured in such a manner as to provide the EVT with one or more default operating modes in the event the ECU temporarily loses electrical power. Depending on the particular configuration, the default modes can be the neutral mode alone, or the neutral mode combined with one or more of the EVT modes, with the EVT modes enabled by providing one or both of the blocking valves with a latching feature.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: January 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael D. Foster, Jy-Jen F. Sah, Peter E. Wu
  • Publication number: 20110296942
    Abstract: A gear selector assembly for selecting a gear position of a transmission includes an internal mode switch having detent lever, a plurality of magnetic field sensors, a control module, a first power supply and a second power supply. The detent lever has a plurality of detents and a magnetized track, where the magnetized track includes a plurality of magnetized elements that are indicative a particular gear selector position. The magnetic field sensors are associated with each of the magnetized elements for sensing changes in a magnetic field of the magnetized track. The control module is in communication with each of the field sensors. Each of the field sensors sends an output current to the control module and the value of the output current is variable. The value of the output current is indicative of at least one of the following: the direction of the magnetic field from the corresponding magnetic track, a short circuit, and an open circuit.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 8, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Peter E. Wu, Richard E. Robinette, Mark A. Vernacchia, Jack P. Koski
  • Patent number: 8066615
    Abstract: A method for operating the powertrain includes monitoring operator inputs, monitoring a transmission output, and terminating an engine operating mode when a time-rate change in the transmission output exceeds a threshold absent a change in the monitored operator inputs.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: November 29, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Ryan D. Martini, Charles J. Van Horn, Peter E. Wu, Andrew M. Zettel, Sam Almasri, Jy-Jen F. Sah
  • Patent number: 8068966
    Abstract: A powertrain system includes a hybrid transmission coupled to an engine and an auxiliary hydraulic pump. The auxiliary hydraulic pump is commanded to operate at a predetermined speed only when enable criteria are met. An engine-off state is inhibited based upon a difference between a commanded speed and a monitored operating speed of the auxiliary hydraulic pump.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 29, 2011
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Peter E. Wu, Ali K Naqvi, Rebecca Trierweiler, Syed Naqi, Ryan D Martini
  • Patent number: 8062170
    Abstract: Temperature of an electric drive is regulated to prevent undesirable thermal effects. Temperature conditions of the electric drive system are monitored and torque of the electric drive system is limited based on the temperature conditions.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: November 22, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Stephen T. West, Wei D. Wang, Brian A Welchko, Steven E. Schulz, Peter E. Wu
  • Patent number: 8027771
    Abstract: There is provided a method to monitor a sensing system adapted to monitor an output of an electro-mechanical transmission. This includes monitoring rotational speed of a wheel operatively connected to a driveline operatively connected to the output of the electro-mechanical transmission. A first expected output of the transmission is determined based upon the output of the first sensor. A second expected output of the transmission is determined based upon a rotational speed of a torque-generative device operatively connected to the transmission. The first and second expected outputs and an output of the sensing system adapted to monitor the output of the electro-mechanical transmission are compared.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 27, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Ryan D. Martini, Charles J. Van Horn, Peter E. Wu, Andrew M. Zettel, Rezaul Karim, Jeffrey R. Dec, Sailaja Paladugu
  • Patent number: 8021257
    Abstract: A transmission includes two blocking valves that control fluid pressure to a plurality of clutches. The blocking valves are characterized by a plurality of states that result in at least three transmission operating conditions. Each of the three operating conditions is characterized by fluid pressure being unavailable to at least one of the clutches.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 20, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael D. Foster, Jy-Jen F. Sah, Peter E. Wu