Patents by Inventor Peter K. Coughlin

Peter K. Coughlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100133192
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Application
    Filed: March 27, 2009
    Publication date: June 3, 2010
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
  • Patent number: 7166149
    Abstract: Using a high pressure rotary adsorbent wheel, a high value compressed gas feed can be purified by concentrating the impurity such as water, condensing it out, before final purification. Instead of exhausting gas from the system, the effluent can be put back into the feed at a point prior to condensation of the high value gas feed, and therefore the entire feed is purified without any high value gas feed going into a waste stream.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: January 23, 2007
    Assignee: UOP LLC
    Inventors: Stephen R. Dunne, Peter K. Coughlin, Rustam H. Sethna
  • Patent number: 6773694
    Abstract: A process for synthesizing a variety of molecular sieves has been developed. The process involves taking a slurry of seed crystals and adding to it nutrients (sources) of the framework elements, e.g. aluminum and silicon in order to grow the seed crystals. The rate of addition of the nutrients is controlled such that it is substantially the same as the crystal growth rate and such that there is substantially no nucleation of new crystals. The seed crystals may be the same or different than the nutrients being added, thus allowing for a layered molecular sieve. When the crystals have reached a desired size, they are isolated by conventional techniques.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: August 10, 2004
    Assignee: UOP LLC
    Inventors: David A. Lesch, Peter K. Coughlin
  • Publication number: 20020134239
    Abstract: The present invention relates to a process for maintaining the humidity of an enclosed space within an acceptable operational range of relative humidity to minimize static electricity while passively removing at least a portion of organic contaminants from the enclosed space. The invention provides a simple, low cost solution to preventing damage to electronic disk drives using an adsorbent sheet material which requires less than about one-tenth the volume of adsorbent carriers which enclose the adsorbent material in a supporting envelope. The process employs a weak adsorbent such as high silica zeolite which effectively controls humidity at low operating temperatures and as the operating temperature increases is enabled to adsorb contaminants by reduced affinity for water.
    Type: Application
    Filed: February 15, 2002
    Publication date: September 26, 2002
    Inventors: Man-Wing Tang, Mark M. Davis, Syed M. Taqvi, Stephen R. Dunne, Peter K. Coughlin
  • Patent number: 5559068
    Abstract: Reforming is effected with a combination of a primary supported noble-metal catalyst and a catalyst containing one or more medium-pore non-zeolitic molecular sieves (MP-NZMS). The latter reforming and dehydrocyclization catalysts comprise a Group VIII metal and at least one bound MP-NZMS characterized in the calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. and characterized by an adsorption of triethylamine less than about 5 percent by weight at a partial pressure of 2.6 torr and a temperature of 22.degree. C. The MP-NZMS catalyst binder preferably is alumina and/or silica, and the Group VIII metal preferably is platinum.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: September 24, 1996
    Assignee: UOP
    Inventors: Qianjun Chen, Peter K. Coughlin, Regis J. Pellet
  • Patent number: 5520796
    Abstract: Reforming is effected with a combination of a primary supported noble-metal catalyst and a catalyst containing one or more medium pore non-zeolite molecular sieves (MP-NZMS). The latter reforming and dehydrocyclization comprise a Group VIII metal and at least one bound MP-NZMS characterized in the calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. and characterized by an adsorption of triethylamine less than about 5 percent by weight at a partial pressure of 2.6 torr and a temperature of 22.degree. C., The MP-NZMS catalyst binder preferably is alumina and/or silica, and the Group VIII metal preferably is platinum.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: May 28, 1996
    Assignee: UOP
    Inventors: Qianjun Chen, Peter K. Coughlin, Regis J. Pellet
  • Patent number: 5346611
    Abstract: Reforming and dehydrocyclization catalysts and processes are disclosed wherein reforming catalysts comprise a Group VIII metal and at least one bound medium pore non-zeolitic molecular sieve characterized in the calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. and characterized by an adsorption of triethylamine less than about 5 percent by weight at a partial pressure of 2.6 torr and a temperature of 22.degree. C. The binder preferably is alumina and/or silica, and the Group VIII metal preferably is platinum.
    Type: Grant
    Filed: July 2, 1993
    Date of Patent: September 13, 1994
    Assignee: UOP
    Inventors: Peter K. Coughlin, Regis J. Pellet
  • Patent number: 5225071
    Abstract: Reforming and dehydrocyclization catalysts and processes are disclosed wherein reforming catalysts comprise a Group VIII metal and at least one medium pore non-zeolitic molecular sieve characterized in the calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. and characterized by an adsorption of triethylamine less than about 5 percent by weight at a partial pressure of 2.6 torr and a temperature of 22.degree. C. In one embodiment the catalyst includes a Group VII metal on a halogenated carrier.
    Type: Grant
    Filed: March 23, 1992
    Date of Patent: July 6, 1993
    Assignee: UOP
    Inventors: Peter K. Coughlin, Regis J. Pellet
  • Patent number: 5098877
    Abstract: Reforming and dehydrocyclization catalysts and processes are disclosed wherein reforming catalysts comprise a Group VIII metal and at least one medium pore non-zeolitic molecular sieve characterized in the calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. and characterized by an adsorption of triethylamine less than about 5 percent by weight at a partial pressure of 2.6 torr and a temperature of 22.degree. C. In one embodiment the catalyst includes a Group VII metal on a halogenated carrier.
    Type: Grant
    Filed: December 10, 1990
    Date of Patent: March 24, 1992
    Assignee: UOP
    Inventors: Peter K. Coughlin, Regis J. Pellet
  • Patent number: 4927768
    Abstract: A sensor for determining the concentration of a gaseous component of interest is disclosed which comprises a sensing element comprising an inorganic crystalline composition including at least one metal component in an amount effective to provide a signal related to the concentration of the gaseous component of interest, the inorganic crystalline composition having been grown, or derived from a material grown, by crystal growth upon at least a portion of the surface of an inorganic oxide composition to form a composite with at least two substantially contiguous phases which exhibit at least one of a distinct compositional heterogeneity and a distinct structural heterogeneity of one phase to the other; and processing means to process the signal and provide a basis for determining the concentration of the gaseous component of interest.
    Type: Grant
    Filed: June 29, 1988
    Date of Patent: May 22, 1990
    Assignee: UOP
    Inventors: Peter K. Coughlin, William C. Mercer, Edith M. Flanigen
  • Patent number: 4923594
    Abstract: A fluid catalytic cracking process comprising contacting a crude oil feedstock with a fluid catalytic cracking catalyst comprising a microporous crystalline multi-compositional, multiphase composite of SAPO-37 molecular sieve as a phase thereof in contiguous relationship with a different microporous faujasitic crystalline molecular sieve as another phase thereof.
    Type: Grant
    Filed: December 19, 1988
    Date of Patent: May 8, 1990
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Jule A. Rabo
  • Patent number: 4914067
    Abstract: Cracking catalysts and their use in cracking processes are disclosed. The cracking catalyst are prepared using mixtures of catalytic cracking catalysts and selected silicoaluminophosphate molecular sieves of U.S. Pat. No. 4,440,871.
    Type: Grant
    Filed: November 28, 1986
    Date of Patent: April 3, 1990
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Mark T. Staniulis, Gary N. Long, Jule A. Rabo
  • Patent number: 4904518
    Abstract: This invention relates to multi-compositional, multiphase composite compositions comprising as phases thereof (i) an electronically conducting or semi-conducting substrate, (ii) an inorganic oxide composition layer in proximity to at least a portion of the surface of said electrically conducting or semi-conducting substrate and (iii) an inorganic crystalline molecular sieve composition layer upon at least a portion of the surface of said inorganic oxide composition layer. The inorganic crystalline molecular sieve composition layer is grown by crystal growth upon at least a portion of the inorganic oxide composition layer surface. The different phases of the composite compositions are substantially contiguous and exhibit a distinct compositional and/or structural heterogeneity of one phase to another.
    Type: Grant
    Filed: June 29, 1988
    Date of Patent: February 27, 1990
    Assignee: UOP
    Inventors: William C. Mercer, Peter K. Coughlin, Stephen T. Wilson, Edith M. Flanigen
  • Patent number: 4876890
    Abstract: A moisture sensing element is disclosed which comprises an electrically continuous article comprising an inorganic crystalline composition selected from the group consisting of zeolite molecular sieves in which the molar ratio of silica to alumina is greater than 6, silica molecular sieves, non-zeolitic molecular sieves and mixtures thereof; and two electrodes affixed to the article at different locations in current carrying relationship so that the current between the two electrodes passes through at least a portion of the inorganic crystalline composition.
    Type: Grant
    Filed: June 29, 1988
    Date of Patent: October 31, 1989
    Assignee: UOP
    Inventors: William C. Mercer, Peter K. Coughlin, Donald McLeod, Jr., Edith M. Flanigen
  • Patent number: 4860584
    Abstract: A moisture sensing element is disclosed which comprises an electrically continuous article comprising a multi-compositional, multi-phase composite composition comprising as phases thereof (i) an electrically conducting or semiconducting substrate, (ii) an inorganic oxide composition layer in proximity to at least a portion of the surface of the electrically conducting or semiconducting substrate and (iii) an inorganic crystalline molecular sleeve composition layer upon at least a portion of the surface of the inorganic oxide composition layer, wherein the different phases of the composite composition are substantially contiguous and exhibit at least one of a distinct compositional heterogeneity and a distinct structural heterogeneity of one phase to the other; and at least one electrode affixed to the article in current carrying relationship so that the current carried by the electrode passes through at least a portion of the inorganic crystalline molecular sieve composition layer.
    Type: Grant
    Filed: June 29, 1988
    Date of Patent: August 29, 1989
    Assignee: UOP
    Inventors: William C. Mercer, Peter K. Coughlin, Donald McLeod, Jr., Edith M. Flanigen
  • Patent number: 4861739
    Abstract: The invention involves composite structures of multiple phases, at least two of which are inorganic crystalline compositions that are contiguous and have a common crystal framework and structure, and at least one of them contains phosphorus and aluminum atoms as part of its crystalline framework structure; and to processes for making the same. It is desired that each phase has a microporous molecular sieve structure. The process involves the growth of a crystalline structure constituting such a phase in the presence of crystals of another of such a phase. Preferably, the process involves a hydrothermal crystallization treatment of the precursors to such phase.
    Type: Grant
    Filed: June 4, 1987
    Date of Patent: August 29, 1989
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Albert R. Springer, Richard T. Gajek
  • Patent number: 4859314
    Abstract: Catalytic cracking catalysts and their use in catalytic cracking processes are disclosed. The instant catalytic cracking catalysts are useful for cracking a hydrocarbon feedstock to produce lower boiling hydrocarbons. The catalysts comprise an effective amount of at least one non-zeolitic molecular sieve characterized in its calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. The non-zeolitic molecular sieve is characterized as containing framework tetrahedral components of aluminum and phosphorus and at least one additional framework tetrahedral component, e.g., the non-zeolitic molecular sieve may be a silicoaluminophosphate as described in U.S. Pat. No. 4,440,871.
    Type: Grant
    Filed: June 2, 1987
    Date of Patent: August 22, 1989
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Mark T. Staniulis, Gary N. Long, Jule A. Rabo
  • Patent number: 4842714
    Abstract: Catalytic cracking processes utilizing selected specific silicoaluminophosphate molecular sieves of U.S. Pat. No. 4,440,871. Processes using such catalysts provide product mixtures different from those obtained by use of catalysts based on zeolitic aluminosilicates. In preferred embodiments, SAPO-37 is utilized.
    Type: Grant
    Filed: July 23, 1987
    Date of Patent: June 27, 1989
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Mark T. Staniulis, Gary N. Long, Jule A. Rabo
  • Patent number: 4814316
    Abstract: A fluid catalytic cracking (FCC) catalyst comprising a microporous crystalline multi-compositional, multiphase composite of SAPO-37 molecular sieve as a phase thereof in contiguous relationship with a different microporous faujasitic crystalline molecular sieve as another phase thereof. The invention encompasses processes for making the catalyst by hydrothermal crystallization and using the novel catalyst for fluid catalytic cracking (FCC) applications.
    Type: Grant
    Filed: June 4, 1987
    Date of Patent: March 21, 1989
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Jule A. Rabo
  • Patent number: 4795549
    Abstract: A catalyst for dehydrocyclization is disclosed comprising a Group VIII metal, the zeolite UHP-Y and, optionally, a halogen component. The instant invention provides reforming processes wherein more valuable products are formed that heretofore formed by use of other zeolite-containing catalysts.
    Type: Grant
    Filed: June 16, 1986
    Date of Patent: January 3, 1989
    Assignee: Union Carbide Corporation
    Inventors: Peter K. Coughlin, Jule A. Rabo