Patents by Inventor Peter S. Kirlin

Peter S. Kirlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8299286
    Abstract: A ?-diketonate alkoxide metal compound and a source reagent composition are provided. The ?-diketonate alkoxide metal compound may include a metal M selected from Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Ti, Zr, Hf, Pr, V, Nb, Ta, Nd, Cr, W, Pm, Mn, Re, Sm, Fe, Ru, Eu, Co, Rh, Ir, Gd, Ni, Tb, Cu, Dy, Ho, Al, Tl, Er, Sn, Pb, Tm, Bi, Lu, Th, Pd, Pt, Ga, In, Au, Ag, Li, Na, K, Rb, Cs, Mo, and Yb. The metal may be complexed to at least one alkoxide ligand and one ?-diketonate ligand.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: October 30, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robin A. Gardiner, Thomas H. Baum, Douglas Cameron Gordon, Connie L. Gordon, legal representative, Timothy E. Glassman, Sofia Pombrik, Brian A. Vaartstra, Peter S. Kirlin
  • Publication number: 20110171382
    Abstract: A metalorganic complex composition comprising a metalorganic complex selected from the group consisting of: metalorganic complexes comprising one or more metal central atoms coordinated to one or more monodentate or multidentate organic ligands, and complexed with one or more complexing monodentate or multidentate ligands containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F; wherein when the number of metal atoms is one and concurrently the number of complexing monodentate or multidentate ligands is one, then the complexing monodentate or multidentate ligand of the metalorganic complex is selected from the group consisting of beta-ketoiminates, beta-diiminates, C2-C10 alkenyl, C2-C15 cycloalkenyl and C6-C10 aryl.
    Type: Application
    Filed: December 4, 2007
    Publication date: July 14, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Robin A. Gardiner, Peter S. Kirlin, Thomas H. Baum, Douglas Gordon, Connie L. Gordon, Timothy E. Glassman, Sophia Pombrik, Brian A. Vaarstra
  • Patent number: 7323581
    Abstract: A metalorganic complex composition comprising a metalorganic complex selected from the group consisting of: metalorganic complexes comprising one or more metal central atoms coordinated to one or more monodentate or multidentate organic ligands, and complexed with one or more complexing monodentate or multidentate ligands containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F; wherein when the number of metal atoms is one and concurrently the number of complexing monodentate or multidentate ligands is one, then the complexing monodentate or multidentate ligand of the metalorganic complex is selected from the group consisting of beta-ketoiminates, beta-diiminates, C2-C10 alkenyl, C2-C15 cycloalkenyl and C6-C10 aryl.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: January 29, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robin A. Gardiner, Thomas H. Baum, Connie L. Gordon, legal representative, Timothy E. Glassman, Sophia Pombrik, Brian A. Vaastra, Peter S. Kirlin, Douglas Cameron Gordon, deceased
  • Patent number: 6846424
    Abstract: A process for removing and/or dry etching noble metal-based material structures, e.g., iridium for electrode formation for a microelectronic device. Etch species are provided by plasma formation involving energization of one or more halogenated organic and/or inorganic substance, and the etchant medium including such etch species and oxidizing gas is contacted with the noble metal-based material under etching conditions. The plasma formation and the contacting of the plasma with the noble metal-based material can be carried out in a downstream microwave processing system to provide processing suitable for high-rate fabrication of microelectronic devices and precursor structures in which the noble metal forms an electrode, or other conductive element or feature of the product article.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: January 25, 2005
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Phillip Chen, Frank DiMeo, Jr., Peter C. Van Buskirk, Peter S. Kirlin
  • Patent number: 6709610
    Abstract: A method for removing from a microelectronic device structure a noble metal residue including at least one metal selected from the group consisting of platinum, palladium, iridium and rhodium, by contacting the microelectronic device structure with a cleaning gas including a reactive halide composition, e.g., XeF2, SF6, SiF4, Si2F6 or SiF3 and SiF2 radicals. The method may be carried out in a batch-cleaning mode, in which fresh charges of cleaning gas are successively introduced to a chamber containing the residue-bearing microelectronic device structure. Each charge is purged from the chamber after reaction with the residue, and the charging/purging is continued until the residue has been at least partially removed to a desired extent. Alternatively, the cleaning gas may be continuously flowed through the chamber containing the microelectronic device structure, until the noble metal residue has been sufficiently removed.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: March 23, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Frank DiMeo, Jr., Peter S. Kirlin, Thomas H. Baum
  • Publication number: 20020011463
    Abstract: A method for removing from a microelectronic device structure a noble metal residue including at least one metal selected from the group consisting of platinum, palladium, iridium and rhodium, by contacting the microelectronic device structure with a cleaning gas including a reactive halide composition, e.g., XeF2, SF6, SiF4, Si2F6 or SiF3 and SiF2 radicals. The method may be carried out in a batch-cleaning mode, in which fresh charges of cleaning gas are successively introduced to a chamber containing the residue-bearing microelectronic device structure. Each charge is purged from the chamber after reaction with the residue, and the charging/purging is continued until the residue has been at least partially removed to a desired extent. Alternatively, the cleaning gas may be continuously flowed through the chamber containing the microelectronic device structure, until the noble metal residue has been sufficiently removed.
    Type: Application
    Filed: January 24, 2001
    Publication date: January 31, 2002
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Frank DiMeo, Peter S. Kirlin, Thomas H. Baum
  • Patent number: 6320213
    Abstract: A dynamic random access memory device (100) includes storage capacitors using a high dielectric constant material, such as, BaSrTiO3, SrBi2Ta2O9 and PbZrTiO3, for the capacitors' insulator. The device includes a conductive plug (106) formed over and connecting with a semiconductor substrate (102). A buffer layer (107) of titanium silicide lays over the plug, and this layer serves to trap “dangling” bonds and to passivate the underlying surface. A first diffusion barrier layer (108), e.g., titanium aluminum nitride, covers the titanium silicide. A capacitor first electrode (110) lays over the diffusion barrier layer. The high dielectric constant material (112) is laid over the capacitor first electrode. A capacitor second electrode (116) is laid over the high dielectric constant material. A second diffusion barrier layer (120) is deposited on the capacitor second electrode. A conductor, such as aluminum (130), is laid over the second diffusion barrier layer.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: November 20, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Scott R. Summerfelt, Paul McIntryre
  • Publication number: 20010024679
    Abstract: A process for removing and/or dry etching noble metal-based material structures, e.g., iridium for electrode formation for a microelectronic device. Etch species are provided by plasma formation involving energization of one or more halogenated organic and/or inorganic substance, and the etchant medium including such etch species and oxidizing gas is contacted with the noble metal-based material under etching conditions. The plasma formation and the contacting of the plasma with the noble metal-based material can be carried out in a downstream microwave processing system to provide processing suitable for high-rate fabrication of microelectronic devices and precursor structures in which the noble metal forms an electrode, or other conductive element or feature of the product article.
    Type: Application
    Filed: June 5, 2001
    Publication date: September 27, 2001
    Applicant: Advanced Technology Materials Inc.
    Inventors: Thomas H. Baum, Phillip Chen, Frank DiMeo, Peter C. Van Buskirk, Peter S. Kirlin
  • Patent number: 6204180
    Abstract: A process for fabricating an electronic device structure on or in a substrate. A storage and dispensing vessel is provided, containing a solid-phase physical sorbent medium having physically adsorbed thereon a fluid for fabrication of the electronic device structure, e.g., a source fluid for a material constituent of the electronic device structure, or a reagent such as an etchant or mask material which is utilized in the fabrication of the electronic device structure but does not compose or form a material constituent of the electronic device structure. In the process, the source fluid is desorbed from the physical sorbent medium and dispensing source fluid from the storage and dispensing vessel, and contacted with the substrate, under conditions effective to utilize the material constituent on or in the substrate.
    Type: Grant
    Filed: December 31, 1997
    Date of Patent: March 20, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, Peter S. Kirlin, James V. McManus
  • Patent number: 6162712
    Abstract: A platinum source reagent liquid solution, comprising:(i) at least one platinum source compound selected from the group consisting of compounds of the formulae:(A) RCpPt(IV)R'.sub.3 compounds, of the formula: ##STR1## wherein: R is selected from the group consisting of hydrogen, methyl, ethyl, i-propyl, n-propyl, n-butyl, i-butyl, t-butyl, trimethylsilyl and trimethylsilyl methyl; and each R' is independently selected from the group consisting of methyl, ethyl, i-propyl, n-propyl, n-butyl, i-butyl, t-butyl, trimethylsilyl and trimethylsilyl methyl; and(B) Pt(.beta.-diketonates).sub.2 of the formula: ##STR2## wherein: each R" is independently selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, trifluoromethyl, perfluoroethyl, and perfluoro-n-propyl, and(ii) a solvent medium therefor.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: December 19, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Peter S. Kirlin, Sofia Pombrik
  • Patent number: 6132492
    Abstract: A sorbent-based gas storage and dispensing system, including a storage and dispensing vessel containing a solid-phase physical sorbent medium having a sorbate gas physically adsorbed thereon. A chemisorbent material is provided in the vessel to chemisorb the impurities for gas phase removal thereof in the storage and dispensing vessel. Desorbed sorbate gas is discharged from the storage and dispensing vessel by a dispensing assembly coupled to the vessel. The chemisorbent may be provided in a capsule including an impurity-permeable, but sorbate gas-impermeable membrane, and installed in the vessel at the time of sorbent material loading. Semiconductor manufacturing processes and products manufactured by such processes are described.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: October 17, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Steven J. Hultquist, Glenn M. Tom, Peter S. Kirlin, James V. McManus
  • Patent number: 6126996
    Abstract: A metalorganic complex of the formula:MA.sub.Y Xwherein:M is a y-valent metal;A is a monodentate or multidentate organic ligand coordinated to M which allows complexing of MAY with X;y is an integer having a value of 2, 3 or 4;each of the A ligands may be the same or different; andX is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F.The metal M may be selected from the group consisting of Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Th, Dy, Ho, Er, Tm, Yb, Lu, Bi, Tl, Y, Pb, Ni, Pd, Pt, Al, Ga, In, Ag, Au, Co, Rh, Ir, Fe, Ru, Sn, Li, Na, K, Rb, Cs, Ca, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. A may be selected from the group consisting of .beta.-diketonates and their sulfur and nitrogen analogs, .beta.-ketoesters and their sulfur and nitrogen analogs, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: October 3, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Thomas W. Baum, Brian A. Vaarstra, Robin A. Gardiner
  • Patent number: 6110529
    Abstract: A method of forming on a substrate a metal film, comprising depositing said metal film on said substrate via chemical vapor deposition from a metalorganic complex of the formula:MA.sub.Y Xwherein:M is a y-valent metal;A is a monodentate or multidentate organic ligand coordinated to M which allows complexing of MA.sub.y with X;y is an integer having a value of 2, 3 or 4; each of the A ligands may be the same or different; andX is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F.The metal M may be selected from the group consisting of Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Tl, Y, Pb, Ni, Pd, Pt, Al, Ga, In, Ag, Au, Co, Rh, Ir, Fe, Ru, Sn, Li, Na, K, Rb, Cs, Ca, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. A may be selected from the group consisting of .beta.-diketonates, .beta.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 29, 2000
    Inventors: Robin A. Gardiner, Peter S. Kirlin, Thomas H. Baum, Douglas Gordon, Timothy E. Glassman, Sofia Pombrik, Brian A. Vaartstra
  • Patent number: 6072689
    Abstract: An integrated circuit capacitor in which a first conductive plate, a layer of ferroelectric material, and a second conductive plate are deposited and formed in sequence. Thereafter a diffusion barrier material and an insulative material are deposited either as a layered dielectric stack with alternating layers of the diffusion barrier material and the insulative material with tensile and compressive stresses in the alternating layers offsetting one another, or as a graded diffusion barrier material varying from a binary oxide of Ta, Nb, or Zr at the surface of the ferroelectric material to SiO.sub.2 at a distance above the surface of the ferroelectric material.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: June 6, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Peter S. Kirlin
  • Patent number: 6019823
    Abstract: Solid-phase physical sorbent medium holding adsorbed fluid is provided in a cartridge, for use in a sorbent-based fluid storage and dispensing system. One or more of such cartridges may be disposed in a fluid storage and dispensing vessel and opened prior or subsequent to sealing of the vessel, to provide desorbable fluid for dispensing from the vessel, e.g., by pressure differential, concentration differential and/or thermal desorption. Use of such cartridges thereby obviates the sorbent bake-out and sorbate gas loading steps necessary in prior practice, thereby simplifying the manufacture of the fluid storage and dispensing system.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: February 1, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael A. Tischler, Peter S. Kirlin
  • Patent number: 5976928
    Abstract: A method of fabricating a ferroelectric capacitor structure by sequentially depositing a bottom electrode layer, a ferroelectric layer and a top electrode layer on a base structure, optionally with deposition of a layer of a conductive barrier material beneath the bottom electrode layer, to form a capacitor precursor structure, and planarizing the capacitor precursor structure by chemical mechanical polishing to yield the ferroelectric capacitor structure, e.g., a stack capacitor or trench capacitor. The process is carried out without dry etching of the electrode layers or dry etching of the ferroelectric layer, to yield ferroelectric capacitors having a very small feature size, as for example between 0.10 and 0.20 .mu.m.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: November 2, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Peter C. Van Buskirk
  • Patent number: 5961697
    Abstract: A fluid storage and dispensing system includes a storage and dispensing vessel containing a solid-phase physical sorbent material for holding a sorbable fluid, and a motive transport assembly associated with the storage and dispensing vessel. The storage and dispensing vessel is arranged for selectively flowing fluid into the vessel for storage, and out of the vessel for dispensing. The sorbable fluid physically adsorbed on the solid-phase physical sorbent medium may be selectively desorbed by pressure differential desorption and/or thermal desorption, to dispense gas when the vessel is in motive transport and/or when the vessel is at rest.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: October 5, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventors: James V. McManus, Dennis F. Brestovansky, Peter S. Kirlin
  • Patent number: 5923970
    Abstract: A method of fabricating an integrated circuit capacitor in which a first conductive plate, a layer of ferroelectric material, and a second conductive plate are deposited and formed in sequence. Thereafter a diffusion barrier material and an insulative material are deposited either (1) as layers of the diffusion barrier material and the insulative material with tensile and compressive stresses in the respective layers offsetting one another, (2) as a layered dielectric stack with alternating layers of the diffusion barrier material and the insulative material, or (3) as a graded diffusion barrier material varying from a binary oxide of Ta, Nb, or Zr at the surface of the ferroelectric material to SiO.sub.2 at a distance above the surface of the ferroelectric material.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: July 13, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Peter S. Kirlin
  • Patent number: 5919522
    Abstract: A method of forming a thin film of BaSrTiO.sub.3 on a substrate in a chemical vapor deposition zone, with transport of a metal precursor composition for the metal-containing film to the chemical vapor deposition zone via a liquid delivery apparatus including a vaporizer. A liquid precursor material is supplied to the liquid delivery apparatus for vaporization thereof to yield the vapor-phase metal precursor composition. The vapor-phase metal precursor composition is flowed to the chemical vapor deposition zone for deposition of metal on the substrate to form the metal-containing film. The liquid precursor material includes a metalorganic polyamine complex, the use of which permits the achievement of sustained operation of the liquid delivery chemical vapor deposition process between maintenance events, due to the low decomposition levels achieved in the vaporization of the polyamine-complexed precursor.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: July 6, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Gregory T. Stauf, Peter S. Kirlin, Duncan W. Brown, Robin A. Gardiner, Gautam Bhandari, Brian A. Vaartstra
  • Patent number: 5840897
    Abstract: A metalorganic complex of the formula:MA.sub.y Xwherein:M is a y-valent metal;A is a monodentate or multidentate organic ligand coordinated to M which allows complexing of MA.sub.y with X;y is an integer having a value of 2, 3 or 4; each of the A ligands may be the same or different; andX is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F.The metal M may be selected from the group consisting of Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Tl, Y, Pb, Ni, Pd, Pt, Al, Ga, In, Ag, Au, Co, Rh, Ir, Fe, Ru, Sn, Li, Na, K, Rb, Cs, Ca, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. A may be selected from the group consisting of .beta.-diketonates and their sulfur and nitrogen analogs, .beta.-ketoesters and their sulfur and nitrogen analogs, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 24, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Thomas H. Baum, Brian A. Vaarstra, Robin A. Gardiner