Patents by Inventor Peter Vernickel

Peter Vernickel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210181280
    Abstract: The invention relates to a shim iron (130) for use with an magnetic resonance (MR) apparatus (10), wherein the shim iron (130) is comprised of a stack of shim plates (131, 132, 133, 134, 135), wherein at least two of the shim plates (131, 132, 133, 134, 135) comprise slits, the slits forming a respective slit pattern of the slit shim plates (131, 132, 133, 134, 135), and wherein the slit patterns, when viewed from the same viewing direction, are comprised of at least two different slit patterns which may not be brought into congruent coverage with each other. In this way, a shim iron (130) is provided which does not heat up to high temperatures due to eddy currents.
    Type: Application
    Filed: April 2, 2019
    Publication date: June 17, 2021
    Inventors: Peter Vernickel, Ingo Schmale, Oliver LIPS
  • Publication number: 20210116522
    Abstract: The present invention is directed to a RF transmit system (1) for a magnetic resonance examination system where it is intended to provide a solution for the problem of rapidly switching between operation modes of different peak power requirements at good power efficiencies. For this purpose the RF transmit system (1) comprises at least one RF channel (14) wherein the RF channel (14) has an RF amplifier (3), at least two power supply devices (4, 5) wherein each of the power supply devices (4, 5) is configured to supply a voltage to the amplifier (3). The RF transmit system (1) further comprises a DC switch (8) configured to switch the voltage supplied to the amplifier (3) between the power supply devices (4, 5) and a controller (2) configured to switch the voltage based on sensor data.
    Type: Application
    Filed: February 15, 2019
    Publication date: April 22, 2021
    Applicant: Koninklijke Philips N.V.
    Inventors: Peter VERNICKEL, Christoph LEUSSLER, Ingo SCHMALE, Jochen KEUPP
  • Publication number: 20210063517
    Abstract: The invention provides for a magnetic resonance imaging system (100) comprising a radio frequency system (116, 114, 118) configured for acquiring magnetic resonance data (144) from an imaging zone (108). The radio frequency system is configured for sending and receiving radio frequency signals to acquire the magnetic resonance data, wherein the radio frequency system comprises: an elliptical transmission coil (114) configured for generating a B1+ excitation field within the imaging zone; and an active B1 shim coil (118) configured for being placed within the imaging zone, wherein the radio frequency system is configured for suppling radio frequency power to the active B1 shim coil during the generation of the B1+ excitation field by the elliptical transmission coil, wherein the B1 shim coil is configured for shimming the B1+ excitation field within the imaging zone.
    Type: Application
    Filed: January 10, 2019
    Publication date: March 4, 2021
    Inventors: Christoph Leussler, Peter Vernickel, Oliver Lips, Ingo Schmale, Daniel Wirtz
  • Patent number: 10918283
    Abstract: An energy depositing therapy system (10), comprising: an energy depositing unit (12) provided for locally depositing energy into a therapy zone (56) of a subject of interest (28) for therapy purposes; a transducer unit (32) that is provided for applying mechanical oscillations to at least a portion of the subject of interest (28); a magnetic resonance imaging system (14) provided for acquiring magnetic resonance imaging data from at least the portion of a subject of interest (28), comprising an image processing unit (24) configured to image the mechanical oscillations; a control unit (40) that is connectable to the energy depositing unit (12), the transducer unit (32) and a magnetic resonance scanner (16) of the magnetic resonance imaging system (14), wherein the control unit (40) is configured to control the depositing of energy in dependence of the processed magnetic resonance imaging data of the portion of the subject of interest (28); a method of controlling an energy depositing therapy system (10) by
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: February 16, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Leussler, Daniel Wirtz, Peter Vernickel, Peter Mazurkewitz
  • Publication number: 20210003646
    Abstract: A multi-channel RF transmit system (1) especially for use in a magnetic resonance examination system comprising, a plurality of RF channels (18, 19) wherein each of the RF channels (18, 19) has an RF amplifier. The multi-channel RF transmit system (1) further comprises a power supply device (2) configured to supply power to the amplifiers (4, 5), a first capacitor bank (6), wherein the first capacitor bank (6) is connected to the power supply device (2) and connected to a first RF amplifier (4), a second capacitor bank (7), wherein the second capacitor bank (7) is connected to the power supply device (2) and connected to a second RF amplifier (5) and a third capacitor bank (8) also connected to the power supply device (2). The third capacitor bank (8) is connected to a DC switch (9), wherein the DC switch (9) is configured to switch the power supplied by the third capacitor bank (8) to the first amplifier (4) or the second amplifier (5).
    Type: Application
    Filed: February 12, 2019
    Publication date: January 7, 2021
    Inventors: PETER VERNICKEL, CHRISTOPH LEUSSLER
  • Publication number: 20200309875
    Abstract: The present invention is directed to a system comprising a body coil (9) for magnetic resonance imaging and an RF amplifier connected to the body coil (9) for feeding the body coil (9) with an RF signal, wherein the body coil (9) comprises two different ports (21, 22) for feeding the RF signal into the body coil (9), the body coil (9) is provided with a switch for selectively activating only one single port (21, 22) for feeding the RF signal to the body coil (9) at a time, and the two ports (21, 22) are located at different locations of the body coil (9) such that the dependence of the reflected part of the RF signal fed into the body coil (9) from the weight of the examination object (1) to which the body coil (9) is applied is different for the two ports (21, 22).
    Type: Application
    Filed: September 26, 2018
    Publication date: October 1, 2020
    Inventors: PETER VERNICKEL, CHRISTOPH LEUSSLER, INGO SCHMALE, CHRISTIAN FINDEKLEE, OLIVER LIPS
  • Patent number: 10788548
    Abstract: The invention provides for a metal detector (100, 300) with at least a first coil (102) for generating a first magnetic field (108) along a first direction (119). The first coil is a split coil with a first (104) and a second (106) portion (104). A coil power supply (110) separately supplying time varying electrical power to the coil portions. At least one electrical sensor (116, 118) measures electrical data (136) descriptive of the electrical power supplied to at least the first coil portion and the second coil portion. The coils are controlled such as to move a field-free region in a predetermined pattern within a measurement zone. If metal is detected, the pattern is modified for refining localisation of the metallic object.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: September 29, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Findeklee, Christoph Leussler, Peter Vernickel
  • Patent number: 10749483
    Abstract: An amplifier device (14) is adapted for an antenna-like transducer for MRI applications, especially for an RF coil. The amplifier device (14) includes at least one amplifier channel (16) including: an input connection device (18) for connecting an RF signal source (12); an output connection device (20) for connecting the antenna-like RF transducer; an RF amplifier unit (22); and an impedance matching circuit (24) configured to adapt the coupling of the RF amplifier unit (22) to the actually connected antenna-like RF transducer with regard to an actual load of the amplifier device (14). The load results from the combination of the antenna-like RF transducer and a person or sample interacting with the antenna-like RF transducer. The impedance matching circuit (24) establishes an electric line (34) between the RF amplifier unit (22) and the antenna-like transducer with an adjustable line length.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 18, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Peter Vernickel
  • Patent number: 10705167
    Abstract: A radio frequency transmit system (40) for use in magnetic resonance imaging apparatuses, comprising a radio frequency driver unit (42) including at least a first radio frequency power source (44; 82) and a second radio frequency power source (46; 84), a radio frequency coil arrangement (48) for generating an RF magnetic excitation field B1, and a plurality of switching members (68, 70, 72, 74) electrically connecting the radio frequency power sources (44, 46; 82, 84) to different pairs of drive ports (58, 60, 62, 64) in a first and in at least a second switching status. The first drive port (58) of the first pair of drive ports (58, 60) and the first drive port (62) of the at least second pair of drive ports (62, 64) are arranged spaced by a fixed predetermined angular distance in the azimuthal direction (56) about the center axis (50); and a magnetic resonance imaging system (10) including such radio frequency transmit system (40).
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: July 7, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Oliver Lips, Peter Vernickel
  • Patent number: 10641851
    Abstract: A radio frequency (RF) coil array with multiple RF coil elements for a magnetic resonance examination system is disclosed. The decoupling of RF coil elements involves sets (pairs) of transformers and may also include geometrical overlap of adjacent coils. The mutual coupling between the transformers is adjustable. This provides additional degrees of freedom to fully decouple the RF coil elements from each other.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: May 5, 2020
    Assignee: Koninklijle Philips N.V.
    Inventors: Peter Vernickel, Christian Findelkee, Christoph Leussler
  • Publication number: 20200041587
    Abstract: The invention provides for a magnetic resonance imaging system (100) comprising a main magnet (104) for generating a main magnetic field within an imaging zone (108). The magnetic resonance imaging system further comprises an RF coil (114) for acquiring magnetic resonance data (164) from the imaging zone, wherein the RF coil comprises multiple RF ports (124, 412, 414, 416, 500, 502, 702, 1004, 1006). The RF coil comprises a switch unit (120) for at least one of the multiple RF ports to individually couple or uncouple the at least one of of the multiple RF ports from the RF coil. The magnetic resonance imaging system further comprises a radio-frequency system (125) for supplying radio-frequency power to each of the multiple RF ports and an RF matching detection system (122) for measuring impedance matching data (166) between the radio-frequency system and the RF coil.
    Type: Application
    Filed: October 2, 2017
    Publication date: February 6, 2020
    Inventors: CHRISTIAN FINDEKLKEE, CHRISTOPH LEUSSLER, FALK UHLEMANN, PETER VERNICKEL
  • Patent number: 10509085
    Abstract: A multichannel radio frequency (RF) receive/transmit system (200) for use in an magnetic resonance (MR) imaging system (110) includes an RF coil array (202) with multiple RF coil elements (204) for emission and reception of RF signals. Each RF coil element (204) is provided with a tuning/matching circuit (208) for comparing forward power provided to at least one of the RF coil elements (204) with reflected power at the respective RF coil element (204) of the at least one of the RF coil elements (204), and for tuning the at least one of the RF coil elements (204) based on a comparison of the forward power and the reflected power at least one of the RF coil elements (204). A magnetic resonance (MR) imaging system (110) which includes the multichannel RF receive/transmit system (200) performs magnetic resonance (MR) imaging.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: December 17, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Peter Vernickel
  • Patent number: 10495705
    Abstract: An radio frequency (RF) transmit module for a magnetic resonance examination system includes a local field monitoring unit that measures a field emitted by an RF transmission element and generates a pick-up coil signal (puc-signal). The puc-signal is amplified and frequency-down-converted by mixing with an oscillator signal. The frequency-down-converted puc-signal and the RF drive signal for the RF transmission element are transferred over a common signal lead. The oscillator signal may also be transferred over the common signal lead.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: December 3, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Peter Vernickel
  • Patent number: 10488473
    Abstract: A magnetic resonance imaging system (10) comprising at least one magnetic resonance radio frequency antenna device (30) and at least one metal detector unit (38) for detecting metal within the subject of interest (20) including at least one metal detector coil (40), wherein the at least one magnetic resonance radio frequency antenna device (30) and the at least one metal detector coil (40) mechanically or electrically or spatially form an integral unit (34); and a method of operating, with regard to detecting metal-comprising implants (36) and selecting magnetic resonance pulse sequences, such magnetic resonance imaging system (10).
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: November 26, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Christian Findeklee, Peter Vernickel
  • Patent number: 10481226
    Abstract: The invention provides for a system (200) for generation of a radio frequency, RF, excitation signal for excitation of nuclei via an RF excitation coil (114) in a magnetic resonance system (100). The system comprises power generation units (203-206) each comprising a synthesizer (211-214), an RF amplifier (231-234), and a first feedback loop (251-254) unit adapted to configure the synthesizer to generate an RF signal which after amplification by the RF amplifier has a predefined first signal characteristic and a combiner (261) adapted for combining the RF signals amplified by the RF amplifiers for obtaining the RF excitation signal.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 19, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Peter Vernickel
  • Patent number: 10441218
    Abstract: The invention relates to the field of magnetic resonance (MR) imaging. It concerns an oscillation applicator for MR rheology. It is an object of the invention to provide an oscillation applicator without restrictions regarding the usability for certain body regions. According to the invention, the oscillation applicator comprises at least one transducer which generates a reciprocating motion at a given frequency and a belt (19) mechanically coupled to the transducer, which belt (19) is designed to be wrapped around a patient's body (10). Moreover, the invention relates to a MR device (1) and to a method of MR imaging.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 15, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Vernickel, Christoph Leussler, Daniel Wirtz, Peter Mazurkewitz
  • Publication number: 20190113586
    Abstract: A radio frequency transmit system (40) for use in magnetic resonance imaging apparatuses, comprising a radio frequency driver unit (42) including at least a first radio frequency power source (44; 82) and a second radio frequency power source (46; 84), a radio frequency coil arrangement (48) for generating an RF magnetic excitation field B1, and a plurality of switching members (68, 70, 72, 74) electrically connecting the radio frequency power sources (44, 46; 82, 84) to different pairs of drive ports (58, 60, 62, 64) in a first and in at least a second switching status. The first drive port (58) of the first pair of drive ports (58, 60) and the first drive port (62) of the at least second pair of drive ports (62, 64) are arranged spaced by a fixed predetermined angular distance in the azimuthal direction (56) about the center axis (50); and a magnetic resonance imaging system (10) including such radio frequency transmit system (40).
    Type: Application
    Filed: April 4, 2017
    Publication date: April 18, 2019
    Inventors: OLIVER LIPS, PETER VERNICKEL
  • Patent number: 10261144
    Abstract: A transmit and/or receive coil assembly includes a first and second exchangeable part configured for transmitting and/or receiving RF signals. The exchangeable parts are exchangeable with each other and configured to co-operate with a permanent part of the transmit and/or receive coil assembly during magnetic resonance imaging in order to generate an RF (or B1+) field that covers a volume of interest of the object to be scanned and/or to receive magnetic resonance signals from the volume of interest of the object.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: April 16, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Leussler, Cecilia Possanzini, Peter Vernickel
  • Publication number: 20190079151
    Abstract: An radio frequency (RF) transmit module for a magnetic resonance examination system is disclosed. The local field monitoring unit measures the field emitted by an RF transmission element and generates a puc-signal. The puc-signal is amplified and frequency-down-converted by mixing with an oscillator signal. The frequency-down-converted puc-signal and the RF drive signal for the RF transmission element as transferred over the common signal lead. The oscillator signal may also be transferred over the common signal lead.
    Type: Application
    Filed: July 12, 2016
    Publication date: March 14, 2019
    Inventors: CHRISTOPH LEUSSLER, PETER VERNICKEL
  • Publication number: 20190036496
    Abstract: The invention relates to an amplifier device (14) adapted for an antenna-like transducer for MRI applications, especially for an RF coil, wherein the amplifier device (14) comprises at least one amplifier channel (16) including: an input connection device (18) for connecting an RF signal source (12); an output connection device (20) for connecting the antenna-like RF transducer; an RF amplifier unit (22); and an impedance matching circuit (24) configured to adapt the coupling of the RF amplifier unit (22) to the actually connected antenna-like RF transducer with regard to an actual load of the amplifier device (14), which load results from the combination of the antenna-like RF transducer and a person or sample interacting with the antenna-like RF transducer, wherein the impedance matching circuit (24) establishes an electric line (34) between the RF amplifier unit (22) and the antenna-like transducer with an adjustable line length. The invention further relates to the corresponding MRI apparatus.
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: CHRISTOPH LEUSSLER, PETER VERNICKEL