Patents by Inventor Peter Vernickel

Peter Vernickel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10185015
    Abstract: A handheld oscillation applicator (40) for use in a magnetic resonance rheology imaging system (10), for applying mechanical oscillations to at least a portion of a subject of interest (20), the handheld oscillation applicator (40) comprising a housing (54), at least one transducer unit (48) configured to output mechanical energy, a piston (68) that is mechanically linked to the at least one transducer unit (48), the piston (68) including a first end (70), a second end (72), and an opening (74) that extends between the first end (70) and the second end (72), wherein the housing (54) comprises at least one opening (60), and the at least one opening (60) of the housing (54) and the opening (74) of the piston (68) at least partially overlap with regard to a housing opening direction (66) defined by an opening center (62) of the opening (60) of the housing (54) at a first surface (56) and an opening center (64) of the opening (60) of the housing (54) at a second surface (58); and an oscillation applicator system
    Type: Grant
    Filed: January 24, 2015
    Date of Patent: January 22, 2019
    Assignee: Koninklijke Philips N.C.
    Inventors: Daniel Wirtz, Peter Mazurkewitz, Christoph Leussler, Peter Vernickel
  • Publication number: 20180364319
    Abstract: A radio frequency (RF) coil array with multiple RF coil elements for a magnetic resonance examination system is disclosed. The decoupling of RF coil elements involves sets (pairs) of transformers and may also include geometrical overlap of adjacent coils. The mutual coupling between the transformers is adjustable. This provides additional degrees of freedom to fully decouple the RF coil elements from each other.
    Type: Application
    Filed: December 8, 2016
    Publication date: December 20, 2018
    Inventors: PETER VERNICKEL, CHRISTIAN FINDELKEE, CHRISTOPH LEUSSLER
  • Publication number: 20180238975
    Abstract: The invention provides for a system (200) for generation of a radio frequency, RF, excitation signal for excitation of nuclei via an RF excitation coil (114) in a magnetic resonance system (100). The system comprises power generation units (203-206) each comprising a synthesizer (211-214), an RF amplifier (231-234), and a first feedback loop (251-254) unit adapted to configure the synthesizer to generate an RF signal which after amplification by the RF amplifier has a predefined first signal characteristic and a combiner (261) adapted for combining the RF signals amplified by the RF amplifiers for obtaining the RF excitation signal.
    Type: Application
    Filed: August 19, 2016
    Publication date: August 23, 2018
    Inventors: CHRISTOPH LEUSSLER, PETER VERNICKEL
  • Publication number: 20180172785
    Abstract: A magnetic resonance imaging system (10) comprising at least one magnetic resonance radio frequency antenna device (30) and at least one metal detector unit (38) for detecting metal within the subject of interest (20) including at least one metal detector coil (40), wherein the at least one magnetic resonance radio frequency antenna device (30) and the at least one metal detector coil (40) mechanically or electrically or spatially form an integral unit (34); and a method of operating, with regard to detecting metal-comprising implants (36) and selecting magnetic resonance pulse sequences, such magnetic resonance imaging system (10).
    Type: Application
    Filed: June 8, 2016
    Publication date: June 21, 2018
    Inventors: CHRISTOPH LEUSSLER, CHRISTIAN FINDEKLEE, PETER VERNICKEL
  • Patent number: 9933503
    Abstract: The invention provides for a medical instrument (200, 400, 500) comprising a magnetic resonance imaging system (202), a transducer (222) for mechanically vibrating at least a portion of the subject within the imaging zone. Instructions cause a processor (236) controlling the medical instrument to: control (100) the transducer to vibrate; control (102) the magnetic resonance imaging system to repeatedly acquire the magnetic resonance data (252) using a first spatially encoding pulse sequence (250); control (104) the magnetic resonance imaging system to acquire navigator data (256) using a second spatially encoding pulse sequence (254); construct (106) a set of navigator profiles (258, 804, 904, 1004, 1108, 1208, 1308) using the navigator data; determine (108) at least one parameter (260) descriptive of transducer vibrations using the set of navigator profiles; and reconstruct (110) at least one magnetic resonance rheology image (262) from the magnetic resonance data.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: April 3, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Vernickel, Daniel Wirtz, Christoph Leussler, Peter Mazurkewitz
  • Publication number: 20170371012
    Abstract: The present invention provides a multichannel radio frequency (RF) receive/transmit system (200) for use in an magnetic resonance (MR) imaging system (110), comprising a RF coil array (202) with multiple RF coil elements (204) for emission and reception of RF signals, whereby each RF coil element (204) is provided with tuning means (206), and a tuning/matching circuit (208) for comparing forward power provided to at least one of the RF coil elements (204) with reflected power at the respective RF coil element (204) of the at least one of the RF coil elements (204), and for tuning the at least one of the RF coil elements (204) based on a comparison of the forward power and the reflected power at least one of the RF coil elements (204). The present invention further provides a magnetic resonance (MR) imaging system (110) comprising the above multichannel RF receive/transmit system (200).
    Type: Application
    Filed: January 6, 2016
    Publication date: December 28, 2017
    Inventors: CHRISTOPH LEUSSLER, PETER VERNICKEL
  • Patent number: 9753111
    Abstract: A system and method determines an isocenter for an imaging scan. The method includes receiving, by a control panel, patient data generated by at least one sensor, the patient data corresponding to dimensions of a body of a patient. The method includes generating, by the control panel, model data as a function of the patient data, the model data representing the body of the patient. The method includes receiving, by the control panel, a target location on the model data, the target location corresponding to a desired position on the body of the patient for performing the imaging scan. The method includes determining, by the control panel, an isocenter for the imaging scan as a function of the target location.
    Type: Grant
    Filed: June 7, 2014
    Date of Patent: September 5, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Forthmann, Sascha Krueger, Tim Nielsen, Jurgen Erwin Rahmer, Peter Vernickel, Peter Boernert, Ulrich Katscher
  • Publication number: 20170234945
    Abstract: The invention provides for a metal detector (100, 300) with at least a first coil (102) for generating a first magnetic field (108) along a first direction (119). The first coil is a split coil with a first (104) and a second (106) portion (104). A coil power supply (110) separately supplying time varying electrical power to the coil portions. At least one electrical sensor (116, 118) measures electrical data (136) descriptive of the electrical power supplied to at least the first coil portion and the second coil portion. The coils are controlled such as to move a field-free region in a predetermined pattern within a measurement zone. If metal is detected, the pattern is modified for refining localisation of the metallic object.
    Type: Application
    Filed: October 2, 2015
    Publication date: August 17, 2017
    Inventors: CHRISTIAN FINDEKLEE, CHRISTOPH LEUSSLER, PETER VERNICKEL
  • Patent number: 9733324
    Abstract: The Magnetic Resonance Imaging (MRI) system includes a radio-frequency transmitter with multiple transmit channels. The MRI system includes an impedance matching network (320, 1402, 1502, 1602) for matching the radio-frequency transmitter to a remotely adjustable radio-frequency antenna (310, 1504, 1602) with multiple antenna elements (312, 314, 316, 318, 1404). The MRI system includes a processor (336) for controlling the MRI system. The execution of the instructions by the processor causes it to: measure (100, 200) a set of radio-frequency properties (352) of the radio-frequency antenna, calculate (102, 202) a matching network command (354) using the set of radio-frequency properties and a radio frequency model (366), and adjust (104, 204) the impedance matching network by sending the matching network command to the impedance matching network, thereby enabling automatic remote impedance matching.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: August 15, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Findeklee, Peter Vernickel
  • Patent number: 9575146
    Abstract: The invention relates to a method of characterizing the RF transmit chain of a magnetic resonance imaging scanner (1) using a local transmit/receive coil system (204; 210), comprising a first local NMR probe and a first local magnetic resonance coil, the first NMR probe being spatially located in immediate neighborhood to the first coil, a local receive coil system (206; 208), comprising a second local NMR probe and a second local magnetic resonance coil, the second NMR probe being spatially located in immediate neighborhood to the second coil, wherein the transmit chain comprises an external MR coil (9; 11; 12; 13), the method comprising: determining with the first magnetic resonance coil, a first MR signal phase evolution of the local RF transmit field generated by MR excitation of the first probe using the first magnetic resonance coil by measuring the RF response of the first probe upon said excitation, determining with the second magnetic resonance coil a second MR signal phase evolution of the local RF
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: February 21, 2017
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Johan Van Den Brink, Ingmar Graesslin, Sascha Krueger, Steffen Weiss, Peter Vernickel
  • Publication number: 20160334484
    Abstract: A handheld oscillation applicator (40) for use in a magnetic resonance rheology imaging system (10), for applying mechanical oscillations to at least a portion of a subject of interest (20), the handheld oscillation applicator (40) comprising a housing (54), at least one transducer unit (48) configured to output mechanical energy, a piston (68) that is mechanically linked to the at least one transducer unit (48), the piston (68) including a first end (70), a second end (72), and an opening (74) that extends between the first end (70) and the second end (72), wherein the housing (54) comprises at least one opening (60), and the at least one opening (60) of the housing (54) and the opening (74) of the piston (68) at least partially overlap with regard to a housing opening direction (66) defined by an opening center (62) of the opening (60) of the housing (54) at a first surface (56) and an opening center (64) of the opening (60) of the housing (54) at a second surface (58); and an oscillation applicator system
    Type: Application
    Filed: January 24, 2015
    Publication date: November 17, 2016
    Inventors: DANIEL WIRTZ, PETER MAZURKEWITZ, CHRISTOPH LEUSSLER, PETER VERNICKEL
  • Publication number: 20160313419
    Abstract: A radio frequency antenna device (30) for use in a magnetic resonance imaging system (10), the magnetic resonance imaging system (10) being configured for acquiring magnetic resonance images of at least a portion of a subject of interest (20); the radio frequency antenna device (30) comprising—at least one radio frequency antennae (32) that is configured for being fed with radio frequency power from at least one radio frequency channel and for applying a radio frequency field B to nuclei of or within the portion of the subject of interest (20) for magnetic resonance excitation, —at least one pickup circuit (46), including an electric or electronic device having a non-linear current-voltage characteristic, —wherein the at least one pickup circuit (46) is configured to provide a trigger signal (56) upon a transfer of the electric or electronic device between a state of high impedance and a state of low impedance, the trigger signal (56) being exploitable for shutting down a supply of radio frequency power to th
    Type: Application
    Filed: December 16, 2013
    Publication date: October 27, 2016
    Inventors: PETER VERNICKEL, OLIVER LIPS, CHRISTIAN FINDEKLEE
  • Publication number: 20160195594
    Abstract: The invention provides a transmit and/or receive coil assembly comprising a first and second exchangeable part configured for transmitting and/or receiving RF signals. The exchangeable parts are exchangeable with each other and configured to co-operate with a permanent part of the transmit and/or receive coil assembly during magnetic resonance imaging in order to generate an RF (or B1+) field that covers a volume of interest of the object to be scanned and/or to receive magnetic resonance signals from the volume of interest of the object.
    Type: Application
    Filed: August 15, 2014
    Publication date: July 7, 2016
    Inventors: CHRISTOPH LEUSSLER, CECILIA POSSANZINI, PETER VERNICKEL
  • Publication number: 20160109545
    Abstract: A system and method determines an isocenter for an imaging scan. The method includes receiving, by a control panel, patient data generated by at least one sensor, the patient data corresponding to dimensions of a body of a patient. The method includes generating, by the control panel, model data as a function of the patient data, the model data representing the body of the patient. The method includes receiving, by the control panel, a target location on the model data, the target location corresponding to a desired position on the body of the patient for performing the imaging scan. The method includes determining, by the control panel, an isocenter for the imaging scan as a function of the target location.
    Type: Application
    Filed: June 7, 2014
    Publication date: April 21, 2016
    Inventors: PETER FORTHMANN, SASCHA KRUEGER, TIM NIELSEN, JURGEN ERWIN RAHMER, PETER VERNICKEL, PETER BOERNERT, ULRICH KATSCHER
  • Publication number: 20160038081
    Abstract: An energy depositing therapy system (10), comprising:—an energy depositing unit (12) provided for locally depositing energy into a therapy zone (56) of a subject of interest (28) for therapy purposes;—a transducer unit (32) that is provided for applying mechanical oscillations to at least a portion of the subject of interest (28);—a magnetic resonance imaging system (14) provided for acquiring magnetic resonance imaging data from at least the portion of a subject of interest (28), comprising an image processing unit (24) configured to image the mechanical oscillations;—a control unit (40) that is connectable to the energy depositing unit (12), the transducer unit (32) and a magnetic resonance scanner (16) of the magnetic resonance imaging system (14), whereinthe control unit (40) is configured to control the depositing of energy in dependence of the processed magnetic resonance imaging data of the portion of the subject of interest (28);
    Type: Application
    Filed: March 28, 2014
    Publication date: February 11, 2016
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: CHRISTOPH LEUSSLER, DANIEL WIRTZ, PETER VERNICKEL, PETER MAZURKEWITZ
  • Publication number: 20150301132
    Abstract: The present invention provides a rheology module (200) for use in a magnetic resonance (MR) rheology imaging system (110), whereby the rheology module (200) is adapted to introduce mechanical oscillations into a subject of interest (120), comprising a housing (202), a mechanical oscillator unit (204), which extends at least partially outside the housing (202) and is movable relative to the housing (202), and a transducer (206) for moving the oscillator unit (204), whereby the rheology module (200) comprises at least one radio frequency (RF) antenna unit (210, 212), which comprises at least one RF coil (214, 216). With the RF antenna device integrated into the rheology module, an antenna placement close to a region of interest (ROI) can be achieved to improve the MR imaging capabilities of a MR rheology imaging system. Thus, imaging of the ROI can be performed more efficiently.
    Type: Application
    Filed: November 4, 2013
    Publication date: October 22, 2015
    Inventors: DANIEL WIRTZ, PETER VERNICKEL, PETER MAZURKEWITZ, CHRISTOPH LEUSSLER
  • Publication number: 20150241540
    Abstract: The invention provides for a medical instrument (200, 400, 500) comprising a magnetic resonance imaging system (202), a transducer (222) for mechanically vibrating at least a portion of the subject within the imaging zone. Instructions cause a processor (236) controlling the medical instrument to: control (100) the transducer to vibrate; control (102) the magnetic resonance imaging system to repeatedly acquire the magnetic resonance data (252) using a first spatially encoding pulse sequence (250); control (104) the magnetic resonance imaging system to acquire navigator data (256) using a second spatially encoding pulse sequence (254); construct (106) a set of navigator profiles (258, 804, 904, 1004, 1108, 1208, 1308) using the navigator data; determine (108) at least one parameter (260) descriptive of transducer vibrations using the set of navigator profiles; and reconstruct (110) at least one magnetic resonance rheology image (262) from the magnetic resonance data.
    Type: Application
    Filed: September 9, 2013
    Publication date: August 27, 2015
    Inventors: Peter Vernickel, Daniel Wirtz, Christoph Leussler, Peter Mazurkewitz
  • Publication number: 20150148663
    Abstract: The invention relates to the field of magnetic resonance (MR) imaging. It concerns an oscillation applicator for MR rheology. It is an object of the invention to provide an oscillation applicator without restrictions regarding the usability for certain body regions. According to the invention, the oscillation applicator comprises at least one transducer which generates a reciprocating motion at a given frequency and a belt (19) mechanically coupled to the transducer, which belt (19) is designed to be wrapped around a patient's body (10). Moreover, the invention relates to a MR device (1) and to a method of MR imaging.
    Type: Application
    Filed: May 30, 2013
    Publication date: May 28, 2015
    Inventors: Peter Vernickel, Christoph Leussler, Daniel Wirtz, Peter Mazurkewitz
  • Publication number: 20140249401
    Abstract: The invention provides an apparatus (1) for magnetic resonance (MR) examination of a subject (S), comprising: an examination region (3) for accommodating the subject (S) during the MR examination; a radio-frequency system (5) for transmission of a radio-frequency (RF) signal or field into the examination region (3) during the MR examination; and a temperature control system (6) for controlling the temperature of the subject (S) in the examination region (3) during the examination. The temperature control system (6) is configured to actively control or regulate an environment of the subject (S), and thereby the temperature or thermal comformt of the subject (S) based upon a detected and/or an expected temperature of the subject (S) during the MR examination.
    Type: Application
    Filed: October 3, 2012
    Publication date: September 4, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Johan Samuel Van Den Brink, Paul Royston Harvey, Peter Forthmann, Christoph Leussler, Peter Vernickel, Jan Hendrik Wülbern, Ingmar Graesslin
  • Patent number: 8812078
    Abstract: The present invention relates to an apparatus (100) for determining at least one electromagnetic quantity characterizing an electromagnetic property of an object, in particular a human body, wherein said object contains magnetic particles. The apparatus (100) applying the known principle of Magnetic Particle Imaging (MPI) comprises selection means for generating a magnetic selection field (50) having the known field pattern showing a field free point (FFP), drive means for changing the position in space of the FFP by means of a magnetic drive field, receiving means for acquiring detection signals depending on the magnetization of the magnetic particles within a field of view (28) and a reconstruction unit (152) for reconstructing a particle distribution quantity depending on the detection signals.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: August 19, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Vernickel, Ulrich Katscher, Bernhard Gleich, Jurgen Erwin Rahmer