Patents by Inventor Philip M. Lessner

Philip M. Lessner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9959979
    Abstract: An improved capacitor is provided wherein the improved capacitor has improved ESR. The capacitor has a fluted anode and an anode wire extending from the fluted anode. A dielectric is on the fluted anode. A conformal cathode is on the dielectric and a plated metal layer is on the carbon layer.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: May 1, 2018
    Assignee: KEMET Electronics Corporation
    Inventors: Randolph S. Hahn, Jeffrey Poltorak, Brandon Summey, Antony P. Chacko, John T. Kinard, Philip M. Lessner
  • Publication number: 20170338047
    Abstract: A capacitor and a method of making a capacitor, is provided with improved reliability performance. The capacitor comprises an anode; a dielectric on the anode; and a cathode on the dielectric wherein the cathode comprises a conductive polymer and a polyanion wherein the polyanion is a copolymer comprising groups A, B and C represented by Formula AxByCz as described herein.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 23, 2017
    Inventors: Ajaykumar Bunha, Antony P. Chacko, Yaru Shi, Qingping Chen, Philip M. Lessner
  • Patent number: 9799449
    Abstract: A capacitor with improved lead frame attachment is described wherein the improved lead frame attachment mitigates defects. The capacitor comprises parallel conductive internal electrodes of alternating polarity with a dielectric between the conductive internal electrodes. A first copper undercoat is in electrical contact with the conductive internal electrodes of a first polarity and a second copper undercoat is in electrical contact with conductive internal electrodes of a second polarity. A first lead is in electrical contact with the first copper undercoat with a first solder between the first lead and the first copper undercoat. A second lead is in electrical contact with the second copper undercoat with a second solder between the second lead and the second copper undercoat.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: October 24, 2017
    Assignee: KEMET Electronics Corporation
    Inventors: R. Allen Hill, Philip M. Lessner, Reggie Phillips, Keith Brown, James B. Byrd
  • Patent number: 9748043
    Abstract: A solid electrolytic capacitor is described which comprises an anode, a dielectric on the anode and a cathode on the dielectric. A conductive coating is on the cathode wherein the conductive layer comprises an exterior surface of a first high melting point metal. An adjacent layer is provided comprising a second high melting point metal, wherein the first high melting point metal and the second high melting point metal are metallurgically bonded with a low melting point metal.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: August 29, 2017
    Assignee: KEMET Electronics Corporation
    Inventors: Antony P. Chacko, John E. McConnell, Robert Ramsbottom, Philip M. Lessner, Randolph S. Hahn, John Bultitude
  • Publication number: 20170084397
    Abstract: A method for forming a high aspect ratio sintered powder anode with low warpage, an anode made thereby and a cathode comprising the anode are provided. The method comprises placing a multiplicity of anode precursors on a forming substrate in a common plane wherein no more than 10% of the anode precursors are out of the common plane. A second substrate is then placed over the forming substrate with the anode precursors between the forming substrate and the second substrate thereby forming a sandwiched assembly. The sandwiched assembly is heated to a sintering temperature of the anode precursors thereby forming the sintered powder anodes. The and sintered powder anodes are removed from between the forming substrate and the second substrate.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 23, 2017
    Inventors: Keith Lee Moore, Philip M. Lessner, Chris Stolarski, James Allen Fife, Liancai Ning
  • Publication number: 20160300665
    Abstract: A method for manufacturing a solid electrolytic capacitor and an improved capacitor formed thereby is described. The method includes forming a dielectric on an anode at a formation voltage; forming a conductive polymer layer on the dielectric; and reforming the dielectric in a reformation electrolyte at a reformation voltage wherein the reformation electrolyte comprises a thermal degradation inhibitor.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 13, 2016
    Inventors: Liancai Ning, Qingping Chen, Philip M. Lessner
  • Publication number: 20160254099
    Abstract: Provided herein is an improved capacitor and a method for forming an improved capacitor. The method includes providing an anode and forming a dielectric on the anode. A linear-hyperbranched polymer is formed and a conductive polymer dispersion is prepared comprising at least one conducting polymer, one polyanion and the linear-hyperbranched polymer. A layer of the conductive polymer dispersion if formed wherein said dielectric is between the anode and the layer.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Antony P. Chacko, Gopakumar Sivasankarapillai, Yaru Shi, Philip M. Lessner
  • Patent number: 9378898
    Abstract: Provided herein is an improved capacitor and a method for forming an improved capacitor. The method includes providing an anode and forming a dielectric on the anode. A linear-hyperbranched polymer is formed and a conductive polymer dispersion is prepared comprising at least one conducting polymer, one polyanion and the linear-hyperbranched polymer. A layer of the conductive polymer dispersion if formed wherein said dielectric is between the anode and the layer.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: June 28, 2016
    Assignee: Kemet Electronics Corporation
    Inventors: Antony P. Chacko, Gopakumar Sivasankarapillai, Yaru Shi, Philip M. Lessner
  • Publication number: 20160079004
    Abstract: An improved capacitor and a method for forming an improved capacitor is detailed. The method comprises forming a tantalum anode from a tantalum powder with a powder charge of no more than 40,000 ?C/g; forming a dielectric on the anode by anodization at a formation voltage of no more than 100 V; and forming a conductive polymeric cathode on the dielectric wherein the capacitor has a breakdown voltage higher than the formation voltage.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 17, 2016
    Inventors: Yuri Freeman, Steven C. Hussey, Jimmy Dale Cisson, Philip M. Lessner
  • Patent number: 9236191
    Abstract: A process for preparing a solid electrolytic capacitor comprising application of coverage enhancing catalyst followed by application of a conducting polymer layer. Coverage enhancing catalyst is removed after coating and curing.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: January 12, 2016
    Assignee: Kemet Electroncis Corporation
    Inventors: Antony P. Chacko, Yang Jin, Randolph S. Hahn, Yongjian Qiu, Philip M. Lessner, Keith R. Brenneman
  • Patent number: 9147530
    Abstract: A process for providing an improved hermetically sealed capacitor which includes the steps of applying a solder and a flux to an interior surface of a case; flowing the solder onto the interior surface; remove flux thereby forming a flux depleted solder; inserting the capacitive element into the casing; reflowing the flux depleted solder thereby forming a solder joint between the case and the solderable layer; and sealing the case.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: September 29, 2015
    Assignee: KEMET Electronics Corporation
    Inventors: Steven C. Hussey, Yuri Freeman, Philip M. Lessner, Qingping Chen, Javaid Qazi
  • Patent number: 9053866
    Abstract: An improved solid electrolytic capacitor and method of forming a solid electrolytic capacitor is described. The method includes forming an anode comprising a valve metal or conductive oxide of a valve metal wherein an anode lead extension protrudes from the anode. A dielectric is formed on the anode and a cathode layer is formed on the dielectric. The anode, dielectric, and cathode layer are encased in a non-conducting material and the anode lead extension is exposed outside of the encasement at a side surface. A conductive metal layer is adhered to the anode lead extension which allows termination preferably by electrically connecting a preformed solid metal terminal, most preferably an L shaped terminal, to the conductive metal layer at the side surface.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: June 9, 2015
    Assignee: Kemet Electronics Corporation
    Inventors: Brandon Summey, Jeffrey Poltorak, Philip M. Lessner, Yongjian Qiu, Randolph S. Hahn, David Jacobs, Keith R. Brenneman, Albert K. Harrington, Chris Stolarski
  • Publication number: 20150135496
    Abstract: A process for preparing a solid electrolytic capacitor comprising application of coverage enhancing catalyst followed by application of a conducting polymer layer. Coverage enhancing catalyst is removed after coating and curing.
    Type: Application
    Filed: September 19, 2014
    Publication date: May 21, 2015
    Inventors: Antony P. Chacko, Yang Jin, Randolph S. Hahn, Yongjian Qiu, Philip M. Lessner, Keith R. Brenneman
  • Patent number: 9030807
    Abstract: A process for preparing a solid electrolytic capacitor comprising application of coverage enhancing catalyst followed by application of a conducting polymer layer wherein the conductive polymeric cathode comprises the coverage enhancement catalyst wherein the conductive polymeric layer has improved coverage of the corners and edges. Coverage enhancing catalyst is removed after coating and curing.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: May 12, 2015
    Assignee: Kemet Electronics Corporation
    Inventors: Antony P. Chacko, Qingping Chen, Yang Jin, Philip M. Lessner, Randolph S. Hahn, Yongjian Qiu, Keith R. Brenneman
  • Publication number: 20150036263
    Abstract: A capacitor with improved lead frame attachment is described wherein the improved lead frame attachment mitigates defects. The capacitor comprises parallel conductive internal electrodes of alternating polarity with a dielectric between the conductive internal electrodes. A first copper undercoat is in electrical contact with the conductive internal electrodes of a first polarity and a second copper undercoat is in electrical contact with conductive internal electrodes of a second polarity. A first lead is in electrical contact with the first copper undercoat with a first solder between the first lead and the first copper undercoat. A second lead is in electrical contact with the second copper undercoat with a second solder between the second lead and the second copper undercoat.
    Type: Application
    Filed: September 26, 2014
    Publication date: February 5, 2015
    Inventors: R. Allen Hill, Philip M. Lessner, Reggie Phillips, Keith Brown, James B. Byrd
  • Patent number: 8902565
    Abstract: A capacitor has first planer internal electrodes in electrical contact with a first external termination. Second planer internal electrodes are interleaved with the first planer internal electrodes wherein the second planer internal electrodes are in electrical contact with a second external termination. A dielectric is between the first planer internal electrodes and the second planer internal electrodes and at least one of the external terminations comprises a material selected from a polymer solder and a transient liquid phase sintering adhesive.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: December 2, 2014
    Assignee: Kemet Electronics Corporation
    Inventors: John E. McConnell, John Bultitude, Reggie Phillips, Robert Allen Hill, Garry L. Renner, Philip M. Lessner, Antony P. Chacko, Jeffrey Bell, Keith Brown
  • Patent number: 8896986
    Abstract: A solid electrolytic capacitor with an anode and a dielectric on the anode. A cathode is on the dielectric and a conductive coating on the dielectric. A cathode lead is electrically connected to the conductive coating by an adhesive selected from the group consisting of a transient liquid phase sinterable material and polymer solder.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 25, 2014
    Assignee: Kemet Electronics Corporation
    Inventors: Antony P. Chacko, John E. McConnell, Philip M. Lessner, Randolph S. Hahn, John Bultitude
  • Publication number: 20140301022
    Abstract: A process for preparing a solid electrolytic capacitor comprising application of a non-ionic polyol prior to application of a conducting polymer layer.
    Type: Application
    Filed: May 29, 2014
    Publication date: October 9, 2014
    Inventors: Qingping Chen, Hong Zhang, Antony P. Chacko, Philip M. Lessner, Randolph S. Hahn, Yongjian Qiu, Keith R. Brenneman
  • Publication number: 20140233157
    Abstract: An improved capacitor is provided wherein the improved capacitor has improved ESR. The capacitor has a fluted anode and an anode wire extending from the fluted anode. A dielectric is on the fluted anode. A conformal cathode is on the dielectric and a plated metal layer is on the carbon layer.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 21, 2014
    Inventors: Randolph S. Hahn, Jeffrey Poltorak, Brandon Summey, Antony P. Chacko, John T. Kinard, Philip M. Lessner
  • Patent number: 8771381
    Abstract: A process for preparing a solid electrolytic capacitor comprising application of a non-ionic polyol prior to application of a conducting polymer layer.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: July 8, 2014
    Assignee: Kemet Electronics Corporation
    Inventors: Qingping Chen, Hong Zhang, Antony P. Chacko, Philip M. Lessner, Randolph S. Hahn, Yongjian Qiu, Keith R. Brenneman