Patents by Inventor Philip Teague

Philip Teague has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11041379
    Abstract: An x-ray-based cased wellbore environment imaging tool is provided, the tool including at least an x-ray source; a radiation shield to define the output form of the produced x-rays; a direction controllable two-dimensional per-pixel collimated imaging detector array; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cased wellbore environment imaging tool to monitor and determine the integrity of materials within wellbore environments is also provided, the method including at least: producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding the wellbore; controlling two-dimensional per-pixel collimated imaging detector arrays; and converting image data from said detectors into consolidated images of the wellbore materials.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: June 22, 2021
    Assignee: Visuray Intech Ltd (BVI)
    Inventors: Philip Teague, Melissa Spannuth
  • Patent number: 11035220
    Abstract: An x-ray-based casing imaging tool, defined by a combination of source collimators, located cylindrically around an X-ray source and a rotatable two-dimensional per-pixel collimated imaging detector array, is provided, the tool including at least an x-ray source; a radiation shield to define the output form of produced x-rays; a direction controllable two-dimensional per-pixel collimated imaging detector array; an imaging window within the tool housing that reduces attenuation of x-rays passing through said tool housing; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: June 15, 2021
    Assignee: Visuray Intech Ltd. (BVI)
    Inventors: Philip Teague, Melissa Spannuth
  • Patent number: 11035978
    Abstract: An x-ray-based reservoir evaluation tool for the measurement of the shale density anticipated at shale-creep barrier within a cased borehole is disclosed, wherein the tool includes an internal length comprising a sonde section, wherein the sonde section further includes an x-ray source; a plurality of radiation measuring detectors; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based shale-seal evaluation tool for measuring the shale density anticipated at shale-creep barrier within a cased borehole is also disclosed, the method including: using x-rays to illuminate the formation surrounding the cased borehole; using detectors to directly measure the density of the formation; using detectors to directly measure the effects on the measurement from tool stand-off or production liner attenuation; and compensating for the production liner and liner-annular region when computing the saturated formation density within the production interval.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: June 15, 2021
    Assignee: Visuray Intech Ltd. (BVI)
    Inventors: Philip Teague, Melissa Spannuth, Dimitrios Pirovolou
  • Publication number: 20210149074
    Abstract: An x-ray based litho-density tool for measurement of formation surrounding a borehole is provided, the tool including at least an internal length comprising a sonde section, wherein said sonde section further comprises an x-ray source; at least one radiation measuring detector; at least one source monitoring detector; a plurality of sonde-dependent electronics; and a reference detector, wherein the reference detector is used to monitor the output of the x-ray source such that the reference detector's output effects corrections to the outputs of the detectors used to measure the density of the materials surrounding the borehole in order to correct for variations in the x-ray source output. Tool logic electronics, PSUs, and one or more detectors used to measure borehole standoff such that other detector responses may be compensated for tool standoff are also provided. Shielding, through-wiring, wear-pads that improve the efficacy and tool functionality are also described and claimed.
    Type: Application
    Filed: January 4, 2021
    Publication date: May 20, 2021
    Applicant: Visuray Intech Ltd (BVI)
    Inventors: Philip Teague, Robert Sloan
  • Publication number: 20210132252
    Abstract: A neutron porosity tool having an electronic neutron generator arrangement and a control mechanism used to provide voltage and pulses to an electronic neutron tube is provided, the neutron generator arrangement including: at least one vacuum tube; at least one ion target; at least one radio-frequency cavity; at least one high-voltage generator; at least two neutron detectors; at least one pulser circuit; and at least one control circuit. A method of controlling a neutron porosity tool having an electronic neutron generator arrangement and a control mechanism that provides voltage and pulses to an electronic neutron tube, the method including at least: controlling a bipolar neutron tube to produce two distinct neutron reactions; using a control circuit to modify the output of a pulser circuit; and using a plurality of neutron detectors to determine formation response offsets.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Applicant: Visuary Intech Ltd (BVI)
    Inventor: Philip Teague
  • Publication number: 20210124083
    Abstract: An x-ray-based reservoir evaluation tool for measurement variations in formation density anticipated at the water-oil interface of a reservoir is provided, the tool including at least: an internal length comprising a sonde section, wherein said sonde section further comprises an x-ray source; radiation measuring detectors; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 29, 2021
    Inventor: Philip Teague
  • Publication number: 20210109247
    Abstract: A first example azimuthal neutron porosity tool for imaging formation and cement volumes surrounding a borehole is provided, the tool including at least an internal length comprising a sonde section, wherein said sonde section further comprises one sonde-dependent electronics; a slip-ring and motor section; and a plurality of tool logic electronics and PSUs. An alternative azimuthal neutron porosity tool for imaging formation and cement volumes surrounding a borehole is also provided, the tool including at least a far space detector; a near space detector; and a source located within a moderator shield that rotates around an internal tool axis.
    Type: Application
    Filed: December 1, 2020
    Publication date: April 15, 2021
    Applicant: Visuray Intech Ltd (BVI)
    Inventors: Philip Teague, Alex Stewart
  • Publication number: 20210072421
    Abstract: A borehole neutron imaging tool having a two-dimensional array of neutron detector crystals, wherein said tool includes at least a source of neutrons; at least one collimated imaging detector to record images created by incident neutrons; sonde-dependent electronics; and a plurality of tool logic electronics and power supply units. A method for borehole neutron imaging, the method including controlling the direction of incident neutrons onto the imaging array; imaging said borehole surroundings; and creating a composite image of the materials surrounding the formation.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Inventor: Philip Teague
  • Publication number: 20210003519
    Abstract: An x-ray-based cased wellbore tubing and casing imaging tool is disclosed, the tool including at least a shield to define the output form of the produced x-rays; a two-dimensional per-pixel collimated imaging detector array; a parallel hole collimator format in one direction that is formed as a pinhole in another direction; Sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cased wellbore tubing and casing imaging tool is also disclosed, the method including at least: producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding a wellbore; determining an inner and an outer diameter of tubing or casing from the backscatter x-rays; and converting image data from said detectors into consolidated images of the tubing or casing.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 7, 2021
    Inventors: Philip Teague, Melissa Spannuth, Alex Stewart, Teresa Tutt
  • Patent number: 10842007
    Abstract: A control mechanism for a high-voltage generator that provides voltage and current to an electronic radiation source in a high-temperature environment is provided, the control mechanism including at least an intermediate enveloping ground plane, and a ground-plane potential monitoring system that provides an input to a control processor that in turn drives the high-voltage generator. A method of controlling a high-voltage generator that powers an electronic radiation source is also provided, the method including at least: measuring an enveloping ground plane potential such that a change in the potential of said enveloping ground plane surrounding the generator is monitored and used to determine the beginning of one or more of a partial discharge and flash-over event.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: November 17, 2020
    Assignee: Visuray Intech LTD (BVI)
    Inventor: Philip Teague
  • Patent number: 10705247
    Abstract: A borehole fracture evaluation tool for imaging radiation emitted by radioactive materials injected into the formation during hydraulic fracturing operations, the tool including at least one collimated imaging detector used to record x-ray backscatter images; sonde-dependent electronics; and a plurality of tool logic electronics and power supply units. A method for fracture evaluation imaging, the method including at least injecting radioactive tracer materials into the formation fractures; controlling the imaging direction of an imaging array detector; imaging the fracture structures; creating a composite image of the fractures versus the formation; and determining the size and position of the fractures.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 7, 2020
    Assignee: Visuray Intech Ltd (BVI)
    Inventors: Mauro Arrambide, Melissa Spannuth, Philip Teague
  • Patent number: 10677958
    Abstract: An x-ray based evaluation tool for measurement of the density of material volumes within and surrounding un-cased, single, dual and multiple-casing wellbore environments is provided, the tool including at least an internal length comprising a sonde section, wherein said sonde section further comprises an x-ray source; a radiation shield for radiation measuring detectors; and a plurality of sonde-dependent electronics; wherein the tool uses x-rays to illuminate the formation surrounding a borehole, wherein the geometry, movement, and plurality of output source beams is selected by moveable collimated shielded sleeves, and a plurality of detectors are used to directly measure the density of the cement annuli and any variations in density within. Various electromagnetic radiation detectors, shields, and practical internal configurations and subsystems and methods of use thereof are also provided.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: June 9, 2020
    Assignee: Visuray Intech Ltd (BVI)
    Inventors: Philip Teague, Alex Stewart
  • Publication number: 20200123890
    Abstract: An x-ray-based cased wellbore environment imaging tool is provided, the tool including at least an x-ray source; a radiation shield to define the output form of the produced x-rays; a direction controllable two-dimensional per-pixel collimated imaging detector array; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cased wellbore environment imaging tool to monitor and determine the integrity of materials within wellbore environments is also provided, the method including at least: producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding the wellbore; controlling two-dimensional per-pixel collimated imaging detector arrays; and converting image data from said detectors into consolidated images of the wellbore materials.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Philip Teague, Melissa Spannuth
  • Patent number: 10605069
    Abstract: An x-ray-based cased wellbore environment imaging tool is provided, the tool including at least an x-ray source; a radiation shield to define the output form of the produced x-rays; a direction controllable two-dimensional per-pixel collimated imaging detector array; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cased wellbore environment imaging tool to monitor and determine the integrity of materials within wellbore environments is also provided, the method including at least: producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding the wellbore; controlling two-dimensional per-pixel collimated imaging detector arrays; and converting image data from said detectors into consolidated images of the wellbore materials.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 31, 2020
    Assignee: Visuray Intech Ltd (BVI)
    Inventors: Philip Teague, Melissa Spannuth
  • Publication number: 20200096668
    Abstract: A first example azimuthal neutron porosity tool for imaging foiniation and cement volumes surrounding a borehole is provided, the tool including at least an internal length comprising a sonde section, wherein said sonde section further comprises one sonde-dependent electronics; a slip-ring and motor section; and a plurality of tool logic electronics and PSUs. An alternative azimuthal neutron porosity tool for imaging formation and cement volumes surrounding a borehole is also provided, the tool including at least a far space detector; a near space detector; and a source located within a moderator shield that rotates around an internal tool axis.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 26, 2020
    Applicant: Visuray Intech Ltd (BVI)
    Inventors: Philip Teague, Alex Stewart
  • Patent number: 10571599
    Abstract: A control mechanism for a high-voltage generator for supplying voltage and current to an electronic radiation source in high-temperature environments is provided, the control mechanism including at least one voltage feedback loop for monitoring the output of the generator; at least one environmental temperature monitor; a control bus; and at least one control processor.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: February 25, 2020
    Assignee: VISURAY INTECH LTD (BVI)
    Inventors: Philip Teague, Long Yu
  • Publication number: 20200051772
    Abstract: A thermal control and electrical connection means for an electronic radiation source that provides a cooling and electrical connection to an electronic radiation source in high-temperature environment is provided, including at least a means for physically dislocating a positive high-voltage generator from the anode/target of the x-ray source; a means for conveying coolant fluids to a target anode along a coaxially formed connector; and a means for removing heat from the target anode along a coaxially-formed connector. A method of removing thermal energy from the target of an electronic radiation source is also provided, including at least introducing coolant fluids onto the target; removing coolant fluids from the target; and relocating the coolant fluids to another part of the tool for disposal within the wellbore.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Inventor: Philip Teague
  • Publication number: 20190271794
    Abstract: An x-ray-based cased wellbore simultaneous tubing and casing measurement tool is disclosed including at least an x-ray source; a radiation shield to define the output from of the produced x-rays; a two-dimensional per-pixel collimated imaging detector array; a secondary two-dimensional per-pixel collimated imaging detector array; a plurality of parallel hole collimators formatted such in one direction so as to form a pinhole in another direction; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cased wellbore simultaneous tubing and casing measurement tool is also disclosed, the method including at least producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding the wellbore; determining the inner and outer diameters of tubing and casing from the backscatter x-rays; and converting image data from said detectors into consolidated images of the tubing and casing.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 5, 2019
    Inventor: Philip Teague
  • Publication number: 20190257976
    Abstract: An x-ray-based reservoir evaluation tool for the measurement of the shale density anticipated at shale-creep barrier within a cased borehole is disclosed, wherein the tool includes an internal length comprising a sonde section, wherein the sonde section further includes an x-ray source; a plurality of radiation measuring detectors; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based shale-seal evaluation tool for measuring the shale density anticipated at shale-creep barrier within a cased borehole is also disclosed, the method including: using x-rays to illuminate the formation surrounding the cased borehole; using detectors to directly measure the density of the formation; using detectors to directly measure the effects on the measurement from tool stand-off or production liner attenuation; and compensating for the production liner and liner-annular region when computing the saturated formation density within the production interval.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Philip Teague, Melissa Spannuth, Dimitrios Pirovolou
  • Publication number: 20190250303
    Abstract: A first example azimuthal neutron porosity tool for imaging formation and cement volumes surrounding a borehole is provided, the tool including at least an internal length comprising a sonde section, wherein said sonde section further comprises one sonde-dependent electronics; a slip-ring and motor section; and a plurality of tool logic electronics and PSUs. An alternative azimuthal neutron porosity tool for imaging formation and cement volumes surrounding a borehole is also provided, the tool including at least a far space detector; a near space detector; and a source located within a moderator shield that rotates around an internal tool axis.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 15, 2019
    Applicant: Visuray Intech Ltd (BVI)
    Inventors: Philip Teague, Alex Stewart