Patents by Inventor Philip Teague

Philip Teague has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190242239
    Abstract: An x-ray-based cased wellbore environment imaging tool is provided, the tool including at least an x-ray source; a radiation shield to define the output form of the produced x-rays; a direction controllable two-dimensional per-pixel collimated imaging detector array; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cased wellbore environment imaging tool to monitor and determine the integrity of materials within wellbore environments is also provided, the method including at least: producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding the wellbore; controlling two-dimensional per-pixel collimated imaging detector arrays; and converting image data from said detectors into consolidated images of the wellbore materials.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: Philip Teague, Melissa Spannuth
  • Publication number: 20190195813
    Abstract: An x-ray-based cased wellbore tubing and casing imaging tool is disclosed, the tool including at least a shield to define the output form of the produced x-rays; a two-dimensional per-pixel collimated imaging detector array; a parallel hole collimator format in one direction that is formed as a pinhole in another direction; Sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cased wellbore tubing and casing imaging tool is also disclosed, the method including at least: producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding a wellbore; determining an inner and an outer diameter of tubing or casing from the backscatter x-rays; and converting image data from said detectors into consolidated images of the tubing or casing.
    Type: Application
    Filed: March 1, 2019
    Publication date: June 27, 2019
    Inventors: Philip Teague, Melissa Spannuth, Alex Stewart, Teresa Tutt
  • Publication number: 20190187325
    Abstract: A borehole neutron imaging tool having a two-dimensional array of neutron detector crystals, wherein said tool includes at least a source of neutrons; at least one collimated imaging detector to record images created by incident neutrons; sonde-dependent electronics; and a plurality of tool logic electronics and power supply units. A method for borehole neutron imaging, the method including controlling the direction of incident neutrons onto the imaging array; imaging said borehole surroundings; and creating a composite image of the materials surrounding the formation.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 20, 2019
    Inventor: Philip Teague
  • Patent number: 10254437
    Abstract: A downhole segmented radiation detector tool measuring formations surrounding a borehole is provided, the tool including at least a plurality of segments capable of detecting radiation, wherein the segments return to the tool after interacting with material surrounding the tool; and radiation shielding configured to allow radiation directly from a radiation source to pass internally through the downhole tool to a reference segment. A method of measuring formations surrounding a borehole is also provided, the method including at least: lowering a downhole tool into a borehole surrounded by a subterranean formation; detecting a first plurality of X-rays or gamma-rays that return to the downhole tool after interacting with materials surrounding the downhole tool using a first segment of an array segmented radiation detector; and configuring associated radiation shielding to allow radiation directly from a radiation source to pass internally through the downhole tool to the reference segment.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: April 9, 2019
    Assignee: VISURAY INTECH LTD (BVI)
    Inventors: Philip Teague, Alex Stewart
  • Publication number: 20190101666
    Abstract: A borehole fracture evaluation tool for imaging radiation emitted by radioactive materials injected into the formation during hydraulic fracturing operations, the tool including at least one collimated imaging detector used to record x-ray backscatter images; sonde-dependent electronics; and a plurality of tool logic electronics and power supply units. A method for fracture evaluation imaging, the method including at least injecting radioactive tracer materials into the formation fractures; controlling the imaging direction of an imaging array detector; imaging the fracture structures; creating a composite image of the fractures versus the formation; and determining the size and position of the fractures.
    Type: Application
    Filed: November 16, 2018
    Publication date: April 4, 2019
    Inventors: Mauro Arrambide, Melissa Spannuth, Philip Teague
  • Publication number: 20190085681
    Abstract: An x-ray-based casing imaging tool, defined by a combination of source collimators, located cylindrically around an X-ray source and a rotatable two-dimensional per-pixel collimated imaging detector array, is provided, the tool including at least an x-ray source; a radiation shield to define the output form of produced x-rays; a direction controllable two-dimensional per-pixel collimated imaging detector array; an imaging window within the tool housing that reduces attenuation of x-rays passing through said tool housing; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs.
    Type: Application
    Filed: October 19, 2018
    Publication date: March 21, 2019
    Inventors: Philip Teague, Melissa Spannuth
  • Publication number: 20190064386
    Abstract: An x-ray-based reservoir evaluation tool for measurement variations in formation density anticipated at the water-oil interface of a reservoir is provided, the tool including at least: an internal length comprising a sonde section, wherein said sonde section further comprises an x-ray source; radiation measuring detectors; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 28, 2019
    Inventor: Philip Teague
  • Publication number: 20190063209
    Abstract: An x-ray-based cement evaluation tool for determining whether a cement bond exists between the casing and cement of a cemented borehole is provided, the tool including at least: an internal length comprising a sonde section, wherein said sonde section further comprises an x-ray source; a radiation shield for radiation measuring detectors; arrayed pixelated detectors; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cement evaluation tool for measuring a cement bond between a casing and the cement of a cemented borehole is also provided, the method including: producing x-ray in a conical beam to illuminate a well casing; measurement of the returning photons as a function of radial and axial offset; remapping the intensity of returning photons to a geometric response within the casing and cement; and determining whether an annulus is present between the casing and cement.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 28, 2019
    Inventor: Philip Teague
  • Publication number: 20190048709
    Abstract: An x-ray-based cased wellbore environment imaging tool is provided, the tool including at least an x-ray source; a radiation shield to define the output form of the produced x-rays; a direction controllable two-dimensional per-pixel collimated imaging detector array; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. A method of using an x-ray-based cased wellbore environment imaging tool to monitor and determine the integrity of materials within wellbore environments is also provided, the method including at least: producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding the wellbore; controlling two-dimensional per-pixel collimated imaging detector arrays; and converting image data from said detectors into consolidated images of the wellbore materials.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Philip Teague, Melissa Spannuth
  • Publication number: 20190049621
    Abstract: An x-ray based cement evaluation tool for measurement of the density of material volumes within single, dual and multiple-casing wellbore environments is provided, wherein the tool uses x-rays to illuminate the formation surrounding a borehole, and a plurality of detectors are used to directly measure the density of the cement annuli and any variations in density within The tool uses x-rays to illuminate the casing surrounding a borehole and a plurality of multi-pixel imaging detectors directly measure the thickness of the casing The tool includes an internal length having a sonde section, wherein the sonde section further includes an x-ray source; a radiation shield for radiation measuring detectors; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs. Other systems and subsystems appropriate for carrying out the foregoing are also disclosed, as are a plurality of example methods of use therefor.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Philip Teague, Alex Stewart
  • Publication number: 20190025455
    Abstract: A combining mechanism for borehole logging tool data that employs modality merging to combine the output data of various borehole logging tools to provide a combined result and automated interpretation is provided, said mechanism comprising: at least one mechanism for assigning interpretive values to individual processed data types; at least one mechanism for combining the interpretive value data sets; and, at least one mechanism for providing an interpretation. A method of combining borehole logging tool data that employs modality merging to combine the output data of various borehole logging tools to provide a combined result and automated interpretation is also provided, said method comprising: assigning interpretive values to individual processed data types; combining the interpretive value data sets; and, providing an interpretation.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 24, 2019
    Inventors: Philip Teague, Alex Stewart
  • Publication number: 20190025450
    Abstract: A combining mechanism for borehole logging tool data that uses density data from a logging tool to inform the geometry of an acoustic-based or ultrasound-based data inversion is provided, comprising: at least one mechanism for converting three-dimensional density data into a three-dimensional density model; at least one mechanism for converting three-dimensional density model into a three-dimensional acoustic impedance model; and, at least one mechanism for processing acoustic data using said three-dimensional acoustic impedance model to produce an interpretable data log.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 24, 2019
    Inventor: Philip Teague
  • Publication number: 20190018166
    Abstract: A measurement compensation mechanism for an electronic radiation source-based borehole logging tool that compensates for geometric variations in the direction output of an x-ray source is provided, the measurement compensation system including: at least one electronic radiation source; at least one radiation shield; at least three reference detectors; and at least one borehole measuring radiation detector. A method of compensating the measurement of an electronic radiation source-based borehole logging tool that compensates for geometric variations in the direction output of an x-ray source is also provided, the method including at least: measuring an azimuthal distribution of radiation intensities equidistant from an electronic radiation source in order to correct a measured radiation value of a borehole-measuring radiation detector relative to the borehole-measuring radiation detector's azimuthal measurement direction.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 17, 2019
    Inventors: Philip Teague, Alex Stewart
  • Publication number: 20180239052
    Abstract: A control mechanism for a high-voltage generator for supplying voltage and current to an electronic radiation source in high-temperature environments is provided, the control mechanism including at least one voltage feedback loop for monitoring the output of the generator; at least one environmental temperature monitor; a control bus; and at least one control processor.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 23, 2018
    Inventors: Philip Teague, Long Yu
  • Publication number: 20180240638
    Abstract: A control mechanism for a high-voltage generator that provides voltage and current to an electronic radiation source in a high-temperature environment is provided, the control mechanism including at least an intermediate enveloping ground plane, and a ground-plane potential monitoring system that provides an input to a control processor that in turn drives the high-voltage generator. A method of controlling a high-voltage generator that powers an electronic radiation source is also provided, the method including at least: measuring an enveloping ground plane potential such that a change in the potential of said enveloping ground plane surrounding the generator is monitored and used to determine the beginning of one or more of a partial discharge and flash-over event.
    Type: Application
    Filed: April 18, 2018
    Publication date: August 23, 2018
    Inventor: Philip Teague
  • Publication number: 20180239053
    Abstract: A neutron porosity tool having an electronic neutron generator arrangement and a control mechanism used to provide voltage and pulses to an electronic neutron tube is provided, the neutron generator arrangement including: at least one vacuum tube; at least one ion target; at least one radio-frequency cavity; at least one high-voltage generator; at least two neutron detectors; at least one pulser circuit; and at least one control circuit. A method of controlling a neutron porosity tool having an electronic neutron generator arrangement and a control mechanism that provides voltage and pulses to an electronic neutron tube, the method including at least: controlling a bipolar neutron tube to produce two distinct neutron reactions; using a control circuit to modify the output of a pulser circuit; and using a plurality of neutron detectors to determine formation response offsets.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 23, 2018
    Inventor: Philip Teague
  • Publication number: 20180231683
    Abstract: A downhole segmented radiation detector tool measuring formations surrounding a borehole is provided, the tool including at least a plurality of segments capable of detecting radiation, wherein the segments return to the tool after interacting with material surrounding the tool; and radiation shielding configured to allow radiation directly from a radiation source to pass internally through the downhole tool to a reference segment. A method of measuring formations surrounding a borehole is also provided, the method including at least: lowering a downhole tool into a borehole surrounded by a subterranean formation; detecting a first plurality of X-rays or gamma-rays that return to the downhole tool after interacting with materials surrounding the downhole tool using a first segment of an array segmented radiation detector; and configuring associated radiation shielding to allow radiation directly from a radiation source to pass internally through the downhole tool to the reference segment.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Philip Teague, Alex Stewart
  • Publication number: 20180188411
    Abstract: An x-ray based evaluation tool for measurement of the density of material volumes within and surrounding un-cased, single, dual and multiple-casing wellbore environments is provided, the tool including at least an internal length comprising a sonde section, wherein said sonde section further comprises an x-ray source; a radiation shield for radiation measuring detectors; and a plurality of sonde-dependent electronics; wherein the tool uses x-rays to illuminate the formation surrounding a borehole, wherein the geometry, movement, and plurality of output source beams is selected by moveable collimated shielded sleeves, and a plurality of detectors are used to directly measure the density of the cement annuli and any variations in density within. Various electromagnetic radiation detectors, shields, and practical internal configurations and subsystems and methods of use thereof are also provided.
    Type: Application
    Filed: February 23, 2018
    Publication date: July 5, 2018
    Inventors: Philip Teague, Alex Stewart
  • Publication number: 20180188410
    Abstract: An x-ray based litho-density tool for measurement of simultaneous invaded and non-invaded formation surrounding a borehole is provided, the tool including at least an internal length comprising a sonde section, wherein sonde section further includes an x-ray source; at least one radiation measuring detector; at least one source monitoring detector; and a plurality of sonde-dependent electronics. In various embodiments, the tool uses x-rays to illuminate the formation surrounding a borehole, and a plurality of detectors are used to directly measure both invaded and non-invaded formation bulk densities.
    Type: Application
    Filed: February 21, 2018
    Publication date: July 5, 2018
    Inventors: Philip Teague, Robert Sloan
  • Publication number: 20180180764
    Abstract: An x-ray based litho-density tool for measurement of formation surrounding a borehole is provided, the tool including at least an internal length comprising a sonde section, wherein said sonde section further comprises an x-ray source; at least one radiation measuring detector; at least one source monitoring detector; a plurality of sonde-dependent electronics; and a reference detector, wherein the reference detector is used to monitor the output of the x-ray source such that the reference detector's output effects corrections to the outputs of the detectors used to measure the density of the materials surrounding the borehole in order to correct for variations in the x-ray source output. Tool logic electronics, PSUs, and one or more detectors used to measure borehole standoff such that other detector responses may be compensated for tool standoff are also provided. Shielding, through-wiring, wear-pads that improve the efficacy and tool functionality are also described and claimed.
    Type: Application
    Filed: February 22, 2018
    Publication date: June 28, 2018
    Inventors: Philip Teague, Robert Sloan