Patents by Inventor Pierre-Marc Allemand

Pierre-Marc Allemand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130320313
    Abstract: Organic electronic devices, compositions, and methods are disclosed that employ electrically conductive nanowires and conducting materials such as conjugated polymers such as sulfonated regioregular polythiophenes which provide high device performance such as good solar cell efficiency. Devices requiring transparent conductors that are resilient to physical stresses can be fabricated, with reduced corrosion problems.
    Type: Application
    Filed: March 28, 2013
    Publication date: December 5, 2013
    Applicants: Cambrios Technologies Corp., Plextronics, Inc.
    Inventors: Sergey B. Li, Shawn P. Williams, Brian E. Woodworth, Pierre-Marc Allemand, Rimple Bhatia, Hash Pakbaz
  • Patent number: 8541098
    Abstract: Provided are a method of isolating and purifying metal nanowires from a crude and complex reaction mixture that includes relatively high aspect ratio nanostructures as well as nanostructures of low aspect ratio shapes, and conductive films made of the purified nanostructures.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: September 24, 2013
    Assignee: Cambrios Technology Corporation
    Inventor: Pierre-Marc Allemand
  • Patent number: 8454721
    Abstract: A method of forming monodispersed metal nanowires comprising: forming a reaction mixture including a metal salt, a capping agent and a quaternary ammonium chloride in a reducing solvent at a first temperature; and forming metal nanowires by reducing the metal salt in the reaction mixture.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: June 4, 2013
    Assignee: Cambrios Technologies Corporation
    Inventor: Pierre-Marc Allemand
  • Patent number: 8431925
    Abstract: Organic electronic devices, compositions, and methods are disclosed that employ electrically conductive nanowires and conducting materials such as conjugated polymers such as sulfonated regioregular polythiophenes which provide high device performance such as good solar cell efficiency. Devices requiring transparent conductors that are resilient to physical stresses can be fabricated, with reduced corrosion problems.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: April 30, 2013
    Assignees: Plextronics, Inc., Cambrios Technologies Corp.
    Inventors: Sergey B. Li, Shawn P. Williams, Brian E. Woodworth, Pierre Marc Allemand, Rimple Bhatia, Hash Pakbaz
  • Publication number: 20130001478
    Abstract: Reliable conductive films formed of conductive nanostructures are described. The conductive films have low levels of silver complex ions and show substantially constant sheet resistance following prolonged and intense light exposure.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Applicant: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Manfred Heidecker, Teresa Ramos, Frank Wallace
  • Patent number: 8310155
    Abstract: Methods for protecting circuit device materials, optoelectronic devices, and caps using a reflowable getter are described. The methods, devices and caps provide advantages because they enable modification of the shape and activity of the getter after sealing of the device. Some embodiments of the invention provide a solid composition comprising a reactive material and a phase changing material. The combination of the reactive material and phase changing material is placed in the cavity of an electronic device. After sealing the device by conventional means (epoxy seal for example), the device is subjected to thermal or electromagnetic energy so that the phase changing material becomes liquid, and consequently: exposes the reactive material to the atmosphere of the cavity, distributes the getter more equally within the cavity, and provides enhanced protection of sensitive parts of the device by flowing onto and covering these parts, with a thin layer of material.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: November 13, 2012
    Assignee: Osram Opto Semiconductor GmbH
    Inventor: Pierre-Marc Allemand
  • Patent number: 8310154
    Abstract: Methods for protecting circuit device materials, optoelectronic devices, and caps using a reflowable getter are described. The methods, devices and caps provide advantages because they enable modification of the shape and activity of the getter after sealing of the device. Some embodiments of the invention provide a solid composition comprising a reactive material and a phase changing material. The combination of the reactive material and phase changing material is placed in the cavity of an electronic device. After sealing the device by conventional means (epoxy seal for example), the device is subjected to thermal or electromagnetic energy so that the phase changing material becomes liquid, and consequently: exposes the reactive material to the atmosphere of the cavity, distributes the getter more equally within the cavity, and provides enhanced protection of sensitive parts of the device by flowing onto and covering these parts, with a thin layer of material.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: November 13, 2012
    Assignee: Osram Opto Semiconductors GmbH
    Inventor: Pierre-Marc Allemand
  • Patent number: 8174667
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: May 8, 2012
    Assignee: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid, Jeffrey Wolk
  • Publication number: 20120104374
    Abstract: Described herein are coating compositions comprising metal nanostructures and one or more conductive polymers, and nanocomposite films formed thereof.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 3, 2012
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventor: Pierre-Marc Allemand
  • Publication number: 20120097059
    Abstract: Described herein are ink compositions suitable for forming conductive films by printing, in particular, by gravure, flexographic, and reverse offset printing.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 26, 2012
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Pierre-Marc Allemand, Rimple Bhatia, Paul Mansky
  • Patent number: 8094247
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: January 10, 2012
    Assignee: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid
  • Publication number: 20110297642
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid, Jeffrey Wolk
  • Publication number: 20110284916
    Abstract: Methods for protecting circuit device materials, optoelectronic devices, and caps using a reflowable getter are described. The methods, devices and caps provide advantages because they enable modification of the shape and activity of the getter after sealing of the device. Some embodiments of the invention provide a solid composition comprising a reactive material and a phase changing material. The combination of the reactive material and phase changing material is placed in the cavity of an electronic device. After sealing the device by conventional means (epoxy seal for example), the device is subjected to thermal or electromagnetic energy so that the phase changing material becomes liquid, and consequently: exposes the reactive material to the atmosphere of the cavity, distributes the getter more equally within the cavity, and provides enhanced protection of sensitive parts of the device by flowing onto and covering these parts, with a thin layer of material.
    Type: Application
    Filed: August 3, 2011
    Publication date: November 24, 2011
    Inventor: Pierre-Marc Allemand
  • Publication number: 20110285004
    Abstract: Methods for protecting circuit device materials, optoelectronic devices, and caps using a reflowable getter are described. The methods, devices and caps provide advantages because they enable modification of the shape and activity of the getter after sealing of the device. Some embodiments of the invention provide a solid composition comprising a reactive material and a phase changing material. The combination of the reactive material and phase changing material is placed in the cavity of an electronic device. After sealing the device by conventional means (epoxy seal for example), the device is subjected to thermal or electromagnetic energy so that the phase changing material becomes liquid, and consequently: exposes the reactive material to the atmosphere of the cavity, distributes the getter more equally within the cavity, and provides enhanced protection of sensitive parts of the device by flowing onto and covering these parts, with a thin layer of material.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 24, 2011
    Inventor: Pierre-Marc Allemand
  • Patent number: 8018568
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: September 13, 2011
    Assignee: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid, Jeffrey Wolk
  • Patent number: 8013526
    Abstract: Methods for protecting circuit device materials, optoelectronic devices, and caps using a reflowable getter are described. The methods, devices and caps provide advantages because they enable modification of the shape and activity of the getter after sealing of the device. Some embodiments of the invention provide a solid composition comprising a reactive material and a phase changing material. The combination of the reactive material and phase changing material is placed in the cavity of an electronic device. After sealing the device by conventional means (epoxy seal for example), the device is subjected to thermal or electromagnetic energy so that the phase changing material becomes liquid, and consequently: exposes the reactive material to the atmosphere of the cavity, distributes the getter more equally within the cavity, and provides enhanced protection of sensitive parts of the device by flowing onto and covering these parts, with a thin layer of material.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: September 6, 2011
    Assignee: Osram Opto Semiconductors GmbH
    Inventor: Pierre-Marc Allemand
  • Publication number: 20110192633
    Abstract: This disclosure is related to photosensitive ink compositions comprising conductive nanostructures and a photosensitive compound, and method of using the same.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 11, 2011
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventor: Pierre-Marc Allemand
  • Publication number: 20110185852
    Abstract: A method of forming monodispersed metal nanowires comprising: forming a reaction mixture including a metal salt, a capping agent and a quaternary ammonium chloride in a reducing solvent at a first temperature; and forming metal nanowires by reducing the metal salt in the reaction mixture.
    Type: Application
    Filed: March 4, 2011
    Publication date: August 4, 2011
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventor: Pierre-Marc Allemand
  • Publication number: 20110095275
    Abstract: Organic electronic devices, compositions, and methods are disclosed that employ electrically conductive nanowires and conducting materials such as conjugated polymers such as sulfonated regioregular polythiophenes which provide high device performance such as good solar cell efficiency. Devices requiring transparent conductors that are resilient to physical stresses can be fabricated, with reduced corrosion problems.
    Type: Application
    Filed: September 24, 2010
    Publication date: April 28, 2011
    Inventors: Sergey B. Li, Shawn P. Williams, Brian E. Woodworth, Pierre-Marc Allemand, Rimple Bhatia, Hash Pakbaz
  • Publication number: 20110088770
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 21, 2011
    Applicant: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid