Patents by Inventor Pieter J. Kerstens

Pieter J. Kerstens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200233089
    Abstract: Methods and systems for performing three-dimensional (3-D) LIDAR measurements with multiple illumination beams scanned over a 3-D environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the 3-D environment under measurement.
    Type: Application
    Filed: April 7, 2020
    Publication date: July 23, 2020
    Applicant: VELODYNE LIDAR, INC.
    Inventors: David S. Hall, Pieter J. Kerstens, Matthew Rekow, Stephen Nestinger
  • Publication number: 20200150242
    Abstract: A plurality of beams of illumination light are emitted from a LIDAR device over a range of angles and scanned about an axis of rotation. The range of angles includes the axis of rotation. Intermediate electronics boards provide mechanical support and electrical connectivity between a rotating electronics board and various elements of a light emission and collection engine. One or more of the optical elements of the collection optics, the illumination optics, or both, is constructed from one or more materials that absorb light outside of a predetermined wavelength range. An overmolded lens is fixedly coupled to one or more of the light detecting elements to collect incoming light over a larger range of angles. A lens element is disposed in the light path between a light emitting element and the illumination optics to flatten the intensity distribution of light emitted from the light emitting element to reduce peak intensity.
    Type: Application
    Filed: January 19, 2020
    Publication date: May 14, 2020
    Applicant: VELODYNE LIDAR, INC.
    Inventors: David S. Hall, Matthew Noel Rekow, Stephen S. Nestinger, Pieter J. Kerstens
  • Publication number: 20200142070
    Abstract: Methods and systems for performing three-dimensional (3-D) LIDAR measurements with multiple illumination beams scanned over a 3-D environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the 3-D environment under measurement.
    Type: Application
    Filed: August 20, 2019
    Publication date: May 7, 2020
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Patent number: 10627490
    Abstract: Methods and systems for performing multiple pulse LIDAR measurements are presented herein. In one aspect, each LIDAR measurement beam illuminates a location in a three dimensional environment with a sequence of multiple pulses of illumination light. Light reflected from the location is detected by a photosensitive detector of the LIDAR system during a measurement window having a duration that is greater than or equal to the time of flight of light from the LIDAR system out to the programmed range of the LIDAR system, and back. The pulses in a measurement pulse sequence can vary in magnitude and duration. Furthermore, the delay between pulses and the number of pulses in each measurement pulse sequence can also be varied. In some embodiments, the multi-pulse illumination beam is encoded and the return measurement pulse sequence is decoded to distinguish the measurement pulse sequence from exogenous signals.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: April 21, 2020
    Assignee: Velodyne Lidar, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens
  • Patent number: 10539661
    Abstract: A plurality of beams of illumination light are emitted from a LIDAR device over a range of angles and scanned about an axis of rotation. The range of angles includes the axis of rotation. Intermediate electronics boards provide mechanical support and electrical connectivity between a rotating electronics board and various elements of a light emission and collection engine. One or more of the optical elements of the collection optics, the illumination optics, or both, is constructed from one or more materials that absorb light outside of a predetermined wavelength range. An overmolded lens is fixedly coupled to one or more of the light detecting elements to collect incoming light over a larger range of angles. A lens element is disposed in the light path between a light emitting element and the illumination optics to flatten the intensity distribution of light emitted from the light emitting element to reduce peak intensity.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: January 21, 2020
    Assignee: Velodyne Lidar, Inc.
    Inventors: David S. Hall, Mathew Noel Rekow, Stephen S. Nestinger, Pieter J. Kerstens
  • Publication number: 20190369258
    Abstract: Methods and systems for performing three-dimensional (3-D) LIDAR measurements with multiple illumination beams scanned over a 3-D environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the 3-D environment under measurement.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20190369257
    Abstract: Methods and systems for performing three-dimensional (3-D) LIDAR measurements with multiple illumination beams scanned over a 3-D environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the 3-D environment under measurement.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20190302266
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination drive are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination drive and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter.
    Type: Application
    Filed: July 9, 2018
    Publication date: October 3, 2019
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow
  • Patent number: 10393877
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with multiple illumination beams scanned over a three dimensional environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the three dimensional environment under measurement.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: August 27, 2019
    Assignee: Velodyne Lidar, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Patent number: 10197669
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with different illumination intensity patterns are described herein. Repetitive sequences of measurement pulses each having different illumination intensity patterns are emitted from a LIDAR system. One or more pulses of each repetitive sequence have a different illumination intensity than another pulse within the sequence. The illumination intensity patterns are varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the illumination intensity pattern is varied based on the orientation of the LIDAR device. In some examples, the illumination intensity pattern is varied based on the distance between a detected object and the LIDAR device. In some examples, the illumination intensity pattern is varied based on the presence of an object detected by the LIDAR device or another imaging system.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: February 5, 2019
    Assignee: Velodyne Lidar, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens, Yupeng Cui, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20190011563
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination drive are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination drive and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 10, 2019
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow
  • Patent number: 10048374
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with different pulse repetition patterns are described herein. Each repetitive pattern is a sequence of measurement pulses that repeat over time. In one aspect, the repetition pattern of a pulsed beam of illumination light emitted from a LIDAR system is varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the repetitive pattern is varied by skipping a number of pulses. In some examples, the repetitive pattern of pulses of illumination light emitted from the LIDAR system is varied by changing a repetition rate of the sequence of emitted pulses. In some examples, the pulse repetition pattern is varied based on the orientation of the LIDAR device. In some examples, the repetition pattern is varied based on an object detected by the LIDAR device or another imaging system.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: August 14, 2018
    Assignee: Velodyne Lidar, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens, Yupeng Cui, Mathew Noel Rekow, Stephen S. Nestinger
  • Patent number: 10018726
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination drive are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination drive and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: July 10, 2018
    Assignee: Velodyne Lidar, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow
  • Publication number: 20180164408
    Abstract: Methods and systems for performing 3-D LIDAR measurements of objects simultaneously illuminated by two or more beams of light in the far field are described herein. A 3-D LIDAR based measurement device simultaneously emits at least two beams of light into a three dimensional environment from different locations. A portion of the three dimensional environment is simultaneously illuminated by the two or more light beams at a distance of at least five meters from the LIDAR device. However, the two or more light beams do not overlap at a distance less than five meters from the LIDAR device. The beams of light are slightly divergent, having highest intensity at the device and steadily lower intensity further away. By overlapping illumination beams in the far field, but not near the LIDAR device, overall intensity is maintained at moderate levels throughout the field of view of the LIDAR device.
    Type: Application
    Filed: January 31, 2017
    Publication date: June 14, 2018
    Inventors: David S. Hall, Mathew Noel Rekow, Pieter J. Kerstens
  • Patent number: 9983297
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with varying illumination field density are described herein. A LIDAR device includes a plurality of pulse illumination sources and corresponding detectors. The current pulses supplied to the pulse illumination sources are varied to reduce total energy consumption and heat generated by the LIDAR system. In some embodiments, the number of active pulse illumination sources is varied based on the orientation of the LIDAR device, the distance between the LIDAR device and an object detected by the LIDAR device, an indication of an operating temperature of the LIDAR device, or a combination thereof. In some embodiments, the number of active pulse illumination sources is varied based on the presence of an object detected by the LIDAR device or another imaging system.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: May 29, 2018
    Assignee: Veloyne Lidar, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20170350983
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with multiple illumination beams scanned over a three dimensional environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the three dimensional environment under measurement.
    Type: Application
    Filed: June 1, 2017
    Publication date: December 7, 2017
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20170269209
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with different pulse repetition patterns are described herein. Each repetitive pattern is a sequence of measurement pulses that repeat over time. In one aspect, the repetition pattern of a pulsed beam of illumination light emitted from a LIDAR system is varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the repetitive pattern is varied by skipping a number of pulses. In some examples, the repetitive pattern of pulses of illumination light emitted from the LIDAR system is varied by changing a repetition rate of the sequence of emitted pulses. In some examples, the pulse repetition pattern is varied based on the orientation of the LIDAR device. In some examples, the repetition pattern is varied based on an object detected by the LIDAR device or another imaging system.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 21, 2017
    Inventors: David S. Hall, Pieter J. Kerstens, Yupeng Cui, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20170269215
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination drive are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination drive and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter.
    Type: Application
    Filed: January 31, 2017
    Publication date: September 21, 2017
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow
  • Publication number: 20170269198
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with varying illumination field density are described herein. A LIDAR device includes a plurality of pulse illumination sources and corresponding detectors. The current pulses supplied to the pulse illumination sources are varied to reduce total energy consumption and heat generated by the LIDAR system. In some embodiments, the number of active pulse illumination sources is varied based on the orientation of the LIDAR device, the distance between the LIDAR device and an object detected by the LIDAR device, an indication of an operating temperature of the LIDAR device, or a combination thereof. In some embodiments, the number of active pulse illumination sources is varied based on the presence of an object detected by the LIDAR device or another imaging system.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 21, 2017
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20170269197
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with different illumination intensity patterns are described herein. Repetitive sequences of measurement pulses each having different illumination intensity patterns are emitted from a LIDAR system. One or more pulses of each repetitive sequence have a different illumination intensity than another pulse within the sequence. The illumination intensity patterns are varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the illumination intensity pattern is varied based on the orientation of the LIDAR device. In some examples, the illumination intensity pattern is varied based on the distance between a detected object and the LIDAR device. In some examples, the illumination intensity pattern is varied based on the presence of an object detected by the LIDAR device or another imaging system.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 21, 2017
    Inventors: David S. Hall, Pieter J. Kerstens, Yupeng Cui, Mathew Noel Rekow, Stephen S. Nestinger