Patents by Inventor Pol Van Dorpe

Pol Van Dorpe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11754825
    Abstract: An illuminator, comprising: an illumination waveguide, and a controller; the illumination waveguide being a planar waveguide configured to receive a light wave at a receiving end and guide it to a mirror end; the mirror end comprising a patterned mirror configured to reflect at least part of the light wave back into the illumination waveguide, the patterned mirror comprising a pattern configured to confer a diffraction pattern to the reflected light, the diffraction pattern contributing to an interference pattern, the interference pattern having an evanescent field outside the illumination waveguide, wherein the evanescent field of the interference pattern is configured to illuminate an object in close relation to the illumination waveguide; wherein the controller is configured to control a wavefront of the received light wave and to set a relation between the controlled wavefront and the pattern of the patterned mirror such that the interference pattern forms at least one element of constructive interference
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: September 12, 2023
    Assignee: IMEC VZW
    Inventor: Pol Van Dorpe
  • Publication number: 20230266265
    Abstract: The current disclosure relates to methods and systems for detecting a target molecule in a sample by using identification molecules linked to assay molecules, wherein the assay molecules bind the target, and where the identification molecules are isolated from the sample and run through a nanopore sensor for detecting the target molecule.
    Type: Application
    Filed: November 1, 2022
    Publication date: August 24, 2023
    Inventors: Mark VEUGELERS, Koen MARTENS, Pol VAN DORPE
  • Patent number: 11555745
    Abstract: Example embodiments relate to methods and devices for generating (quasi-) periodic interference patterns. One embodiment includes a method for generating an interference pattern using multi-beam interference of electromagnetic radiation. The method includes computing a set of grid points in a complex plane representing a grid with a desired symmetry. The method also includes selecting a radius of a virtual circle. Additionally, the method includes selecting a set of grid points in the complex plane that lies on the virtual circle centered around a virtual center point. Further, the method includes associating an argument of each grid point of the selected set of grid points in the complex plane with a propagation direction of plane waves or quasi plane waves or parallel wave fronts. In addition, the method includes obtaining the interference pattern that is a superposition of the plane waves or quasi plane waves or parallel wave fronts.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: January 17, 2023
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU Leuven R&D
    Inventors: Niels Verellen, Dmitry Kouznetsov, Pol Van Dorpe
  • Publication number: 20230010628
    Abstract: According to an aspect of the present inventive concept there is provided an imaging system for imaging of a sample, comprising a light source, an interference filter and a detector, the light source generates illumination light of a single wavelength to induce elastic scattering of the light by the sample, the interference filter selectively reduces transmittance of light having an incident angle on the interference filter corresponding to non-scattered light, the detector is configured to detect a two-dimensional representation of the elastically scattered light transmitted by the interference filter.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 12, 2023
    Inventor: Pol VAN DORPE
  • Publication number: 20230003710
    Abstract: A method of operating a pore field-effect transistor (FET) sensor for detecting particles, wherein the pore FET sensor comprises a FET wherein a gate is controlled by a pore filled by a fluid, comprises: controlling a first voltage (Vcis) to set the FET in a subthreshold region; controlling a second voltage (Vtrans) to set a voltage difference between the first and second voltages (Vtrans) such that an effective difference in gate voltage experienced between a minimum and a maximum effective gate voltage during movement of a particle in the fluid is at least kT/q; and detecting a drain-source current in the FET, wherein the particle passing through the pore modulates the drain-source current for detecting presence of the particle.
    Type: Application
    Filed: June 27, 2022
    Publication date: January 5, 2023
    Inventors: Anne VERHULST, Pol VAN DORPE
  • Patent number: 11366060
    Abstract: An apparatus for detecting fluorescent light emitted from a sample comprises: a light source, which is configured to emit excitation light of an excitation wavelength towards a sample comprising fluorophores such that fluorescent light is induced; a photo-detector for detecting light incident on the photo-detector; and an interference filter arranged on the photo-detector, wherein the interference filter is configured to selectively collect and transmit light towards the photo-detector based on an angle of incidence of the light towards the interference filter, wherein the interference filter is configured to selectively transmit supercritical angle fluorescence from the sample towards the photo-detector and suppress undercritical angle fluorescence from the sample.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 21, 2022
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN
    Inventors: Finub James Shirley, Pol Van Dorpe
  • Patent number: 11367797
    Abstract: In a first aspect, the present invention relates to a nanopore field-effect transistor sensor (100), comprising: i) a source region (310) and a drain region (320), defining a source-drain axis; ii) a channel region (330) between the source region (310) and the drain region (320); iii) a nanopore (400), defined as an opening in the channel region (330) which completely crosses through the channel region (330), oriented at an angle to the source-drain axis, having a first orifice (410) and a second orifice (420), and being adapted for creating a non-linear potential profile between the first (410) and second (420) orifice.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 21, 2022
    Assignee: IMEC VZW
    Inventors: Chang Chen, Koen Martens, Pol Van Dorpe, Simone Severi
  • Publication number: 20220178812
    Abstract: According to an aspect of the present inventive concept there is provided a light excitation and collection device for a micro-fluidic system, comprising: a light source configured to generate excitation light; a plurality of excitation waveguides, each associated with a flow channel of the micro-fluidic system; wherein each excitation waveguide is configured to receive and redirect the excitation light towards the flow channel, such that the excitation light is elastically scattered by a sample in the flow channel forming forward and side scattered light; and wherein the light excitation and collection device further comprises: at least one forward scattered light collection point; and at least one side scattered light collection point; and wherein the forward scattered light collected for all excitation waveguides is detected by a first plurality of light sensitive areas and the side scattered light collected for all excitation waveguides is detected by a second plurality of light sensitive areas, the fi
    Type: Application
    Filed: December 7, 2021
    Publication date: June 9, 2022
    Inventors: Niels VERELLEN, Pol VAN DORPE
  • Publication number: 20220113254
    Abstract: The present invention provides an apparatus for detecting photoluminescent light emitted from a sample, said apparatus (200; 300) comprising at least one light source (210; 310, 318), which is configured to emit light of a first and a second wavelength towards a sample comprising photoluminescent particles, wherein said first wavelength is an excitation wavelength for inducing photo-luminescent light from said photoluminescent particles, and wherein said second wavelength is longer than said first wavelength and for gathering background noise information from said sample.
    Type: Application
    Filed: February 14, 2020
    Publication date: April 14, 2022
    Inventors: Finub JAMES SHIRLEY, Pol VAN DORPE
  • Patent number: 11262239
    Abstract: The present disclosure relates to a spectral sensor for detection of individual light-emitting particles. The sensor is comprising an array of photo-sensitive detectors for detecting light emitted by said individual light-emitting particles and a filter array comprising a plurality of different band-stop filters. The filter array is configured to transmit wavelengths in a detectable wavelength region to the array of photo-sensitive detectors, and wherein each band-stop filter is associated with one or more particular photo-sensitive detectors, and the plurality of different band-stop filters are configured to reflect different wavelength intervals within said detectable wavelength region so that each photo-sensitive detector of the array is configured to detect the wavelengths of the detectable wavelength region other than the reflected wavelength interval of the band-stop filter being associated with the photo-sensitive detector.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: March 1, 2022
    Assignee: IMEC VZW
    Inventors: Peter Peumans, Pol Van Dorpe, Niels Verellen
  • Publication number: 20220003602
    Abstract: According to an aspect of the present inventive concept there is provided a light transmission system (100, 200) for delivering light to a Raman spectrometer (20), the system comprising: a homogenizer (110, 510) with an entrance surface (112, 512) having an entrance height and an entrance width, an exit surface (114, 514) having an exit height and an exit width, and wherein the exit height is of a larger size than the entrance height; and wherein the homogenizer (110, 510) is configured to receive, at the entrance surface (112, 512), light from a bundle (210) of optical fibers (220) and wherein each fiber (220) in the bundle (210) defines an entrance divergence angle of light; and wherein the homogenizer (110, 510) is configured to transmit light such that an exit divergence angle of light, in a plane parallel with a direction of the exit height, is smaller than the entrance divergence angle of light, in a plane parallel with a direction of the entrance height.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 6, 2022
    Inventors: Kirill ZINOVIEV, Pol VAN DORPE
  • Publication number: 20210325254
    Abstract: Example embodiments relate to methods and devices for generating (quasi-) periodic interference patterns. One embodiment includes a method for generating an interference pattern using multi-beam interference of electromagnetic radiation. The method includes computing a set of grid points in a complex plane representing a grid with a desired symmetry. The method also includes selecting a radius of a virtual circle. Additionally, the method includes selecting a set of grid points in the complex plane that lies on the virtual circle centered around a virtual center point. Further, the method includes associating an argument of each grid point of the selected set of grid points in the complex plane with a propagation direction of plane waves or quasi plane waves or parallel wave fronts. In addition, the method includes obtaining the interference pattern that is a superposition of the plane waves or quasi plane waves or parallel wave fronts.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 21, 2021
    Inventors: Niels Verellen, Dmitry Kouznetsov, Pol Van Dorpe
  • Patent number: 11096608
    Abstract: The present disclosure relates to devices and methods for non-invasive measuring of analytes. At least one embodiment relates to a wearable system for non-invasive measuring of a concentration of an analyte in skin tissue. The wearable system includes an integrated circuit that includes a first optical unit. The first optical unit includes a Raman spectrometer. The first optical unit also includes an OCT spectrometer and an interferometer optically coupled to the OCT spectrometer or an infrared (IR) spectrometer. The first optical unit additionally includes a light coupler. The wearable system further includes a first light source for performing Raman spectroscopy. The wearable system additionally includes a second light source for performing OCT spectroscopy or IR spectroscopy. Still further, the wearable system includes read-out electronics to determine an optical model of the skin tissue based on the spectroscopic data and to determine the concentration of the analyte.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: August 24, 2021
    Assignee: IMEC vzw
    Inventors: Pol Van Dorpe, Peter Peumans
  • Publication number: 20210191100
    Abstract: An illuminator, comprising: an illumination waveguide, and a controller; the illumination waveguide being a planar waveguide configured to receive a light wave at a receiving end and guide it to a mirror end; the mirror end comprising a patterned mirror configured to reflect at least part of the light wave back into the illumination waveguide, the patterned mirror comprising a pattern configured to confer a diffraction pattern to the reflected light, the diffraction pattern contributing to an interference pattern, the interference pattern having an evanescent field outside the illumination waveguide, wherein the evanescent field of the interference pattern is configured to illuminate an object in close relation to the illumination waveguide; wherein the controller is configured to control a wavefront of the received light wave and to set a relation between the controlled wavefront and the pattern of the patterned mirror such that the interference pattern forms at least one element of constructive interference
    Type: Application
    Filed: December 1, 2020
    Publication date: June 24, 2021
    Inventor: Pol VAN DORPE
  • Publication number: 20210184053
    Abstract: In a first aspect, the present invention relates to a nanopore field-effect transistor sensor (100), comprising: i) a source region (310) and a drain region (320), defining a source-drain axis; ii) a channel region (330) between the source region (310) and the drain region (320); iii) a nanopore (400), defined as an opening in the channel region (330) which completely crosses through the channel region (330), oriented at an angle to the source-drain axis, having a first orifice (410) and a second orifice (420), and being adapted for creating a non-linear potential profile between the first (410) and second (420) orifice.
    Type: Application
    Filed: July 24, 2018
    Publication date: June 17, 2021
    Inventors: Chang Chen, Koen Martens, Pol Van Dorpe, Simone Severi
  • Patent number: 10928305
    Abstract: A sensor device for quantifying luminescent targets comprises a light source, a detector, a modulator, and a processor. The light source is adapted for exciting the luminescent target. The detector is adapted for detecting the luminescence of the luminescent target resulting in a measured signal which comprises a desired signal originating from the luminescent target and a background signal. The modulator is adapted for modulating a physical parameter resulting in a modulation of the desired signal which is different from the modulation of the background signal. The processor is configured to correlate the modulation of the physical parameter with the modulation of the desired signal and/or the modulation of the background signal.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: February 23, 2021
    Assignee: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Publication number: 20210018439
    Abstract: A photonic system and a method for analysing target molecules that emit radiation upon being exposed to excitation radiation includes a radiation source configured to provide excitation radiation with a predetermined polarization state, and a photonics chip that includes an analysis region for exposing target molecules to radiation from the radiation source, so that target molecules with a dipole component along the direction of polarization of the excitation radiation emit radiation with an angular profile. A waveguide structure captures radiation emitted from the analysis region by target molecules. The waveguide structure is configured to extract the emitted radiation in different positions in accordance with the angular profile of the emitted radiation for sampling the angular profile.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Inventors: Pieter Neutens, MD Mahmud Ul Hasan, Pol Van Dorpe
  • Patent number: 10883939
    Abstract: An imaging apparatus comprises: (i) an illumination waveguide configured to propagate light by total internal reflection, wherein an evanescent field illuminates an object in close relation to the illumination waveguide; (ii) an array of light-sensitive areas arranged on a common substrate with the illumination waveguide for detecting light from the object; and (iii) a controller configured to control forming of an interference pattern in the illumination waveguide, wherein the interference pattern comprises at least one element of constructive interference for selectively illuminating a portion of the object, the at least one element having a dimension with a size in a range of 100 nm-10 ?m; wherein the controller is configured to sequentially change the interference pattern in relation to the object such that different portions are illuminated and light from different portions is sequentially detected.
    Type: Grant
    Filed: June 15, 2019
    Date of Patent: January 5, 2021
    Assignee: IMEC VZW
    Inventors: Pol Van Dorpe, Niels Verellen
  • Patent number: 10871447
    Abstract: Sensor devices for quantifying luminescent targets are described herein. An example device comprises a light source for exciting the targets, thus generating luminescence signals and a detector for detecting these signals, resulting in a detected signal which comprises a desired signal originating from the targets and a background signal. It moreover comprises a bleaching device for bleaching of at least part of the sources generating the background signal and a processor configured to trigger the bleaching device to start bleaching, and to trigger the light source for exciting the remaining luminescent targets which are not bleached, and to trigger the detector for detecting the luminescence signal of the remaining luminescent targets, so as to generate a measurement signal representative for the quantification of the luminescent targets.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 22, 2020
    Assignee: Imec VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Patent number: 10845310
    Abstract: A sensor device for quantifying luminescent targets configured in an at least one dimensional pattern. The sensor device comprises a detector for obtaining an at least one dimensional pattern of measured signals, wherein the detector is adapted for detecting the luminescence of the luminescent targets, resulting in a measured pattern. The sensor device moreover comprises a processor configured to correlate the measured pattern with at least one reference pattern, so as to generate a measurement signal representative for the quantification of luminescent targets. The at least one reference pattern is a recorded pattern or an expected pattern. A recorded pattern is a pattern which is obtained by the detector before the measured pattern is obtained.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 24, 2020
    Assignee: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe