Patents by Inventor Pol Van Dorpe

Pol Van Dorpe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200271582
    Abstract: An apparatus for detecting fluorescent light emitted from a sample comprises: a light source, which is configured to emit excitation light of an excitation wavelength towards a sample comprising fluorophores such that fluorescent light is induced; a photo-detector for detecting light incident on the photo-detector; and an interference filter arranged on the photo-detector, wherein the interference filter is configured to selectively collect and transmit light towards the photo-detector based on an angle of incidence of the light towards the interference filter, wherein the interference filter is configured to selectively transmit supercritical angle fluorescence from the sample towards the photo-detector and suppress undercritical angle fluorescence from the sample.
    Type: Application
    Filed: September 18, 2018
    Publication date: August 27, 2020
    Inventors: Finub JAMES SHIRLEY, Pol VAN DORPE
  • Publication number: 20200216890
    Abstract: A method for sequencing a template polynucleotide, comprising the steps of: a) Providing a sensor comprising: an active region comprising a source region, a drain region, and a channel region, a dielectric region on the channel region, a polymerase coupled to the dielectric region, the polymerase having an active site, the polymerase being separated from the dielectric region by a gap, one or more sensitizing means, a fluidic gate region to which the polymerase is exposed, a template polynucleotide bound to a primer, the template polynucleotide being bound to the polymerase; b) Exposing the polymerase to one or more nucleotide polyphosphates; and c) Electrically monitoring changes in the channel region electrical properties.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 9, 2020
    Inventors: Koen Martens, Pol Van Dorpe, Karolien Jans, Gabrielle Woronoff
  • Publication number: 20200200604
    Abstract: The present disclosure relates to a spectral sensor for detection of individual light-emitting particles. The sensor is comprising an array of photo-sensitive detectors for detecting light emitted by said individual light-emitting particles and a filter array comprising a plurality of different band-stop filters. The filter array is configured to transmit wavelengths in a detectable wavelength region to the array of photo-sensitive detectors, and wherein each band-stop filter is associated with one or more particular photo-sensitive detectors, and the plurality of different band-stop filters are configured to reflect different wavelength intervals within said detectable wavelength region so that each photo-sensitive detector of the array is configured to detect the wavelengths of the detectable wavelength region other than the reflected wavelength interval of the band-stop filter being associated with the photo-sensitive detector.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 25, 2020
    Inventors: Peter PEUMANS, Pol Van DORPE, Niels VERELLEN
  • Publication number: 20200141898
    Abstract: A sensor is provided. The sensor includes a field effect transistor comprising: an active region comprising a source region, a drain region, and a channel region between the source region and the drain region; a dielectric region on the channel region; an enzyme coupled to the dielectric region, the enzyme having an active site for interacting with a substrate; an electrolyte-screening layer coupled to the dielectric region, covering part of the enzyme while leaving the active site uncovered, thereby permitting interaction of the substrate with the active site, and a fluidic gate region to which the active site of the enzyme is exposed. A biosensing device including one or more of the sensors is also provided.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 7, 2020
    Inventors: Koen Martens, Karolien Jans, Pol Van Dorpe, Gabrielle Woronoff
  • Publication number: 20190383743
    Abstract: An imaging apparatus comprises: (i) an illumination waveguide configured to propagate light by total internal reflection, wherein an evanescent field illuminates an object in close relation to the illumination waveguide; an array of light-sensitive areas arranged on a common substrate with the illumination waveguide for detecting light from the object; and (iii) a controller configured to control forming of an interference pattern in the illumination waveguide, wherein the interference pattern comprises at least one element of constructive interference for selectively illuminating a portion of the object, the at least one element having a dimension with a size in a range of 100 nm-10 ?m; wherein the controller is configured to sequentially change the interference pattern in relation to the object such that different portions are illuminated and light from different portions is sequentially detected.
    Type: Application
    Filed: June 15, 2019
    Publication date: December 19, 2019
    Inventors: Pol Van Dorpe, Niels Verellen
  • Patent number: 10481348
    Abstract: There is provided an optical system for coupling light into a waveguide. The optical system comprising a coupler arranged at a portion of the waveguide. The coupler has a surface with a grating structure for directing light into the waveguide formed therein. A cladding layer embeds the coupler and an optical path changing structure is formed in the cladding layer. The optical path changing structure has a refractive surface and a reflective surface, each forming an acute angle with respect to the surface of the coupler. Light which enters the optical path changing structure through the refractive surface will be refracted and directed towards the reflective surface. The reflective surface is arranged to reflect the light such that it is directed towards the grating structure of the coupler along a direction suitable for efficient coupling of light into the waveguide.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: November 19, 2019
    Assignee: miDiagnostics NV
    Inventors: Jeonghwan Song, Pol Van Dorpe, Giuseppe Fiorentino, Philippe Soussan, Xavier Rottenberg
  • Patent number: 10359363
    Abstract: A sensor device for quantifying luminescent targets. The device comprises a light source for exciting the targets, thus generating luminescence signals, and a detector for detecting these signals of the targets in a cell, resulting in a detected signal comprising a desired signal and a background signal. The detector has a spatial cell resolution and/or a time resolution that is so high that only a limited number of targets will be present in the cell when measuring at low concentration and/or that only a limited number of targets add to the cell in between two measurements. A change in the number of targets in the cell can be observed in the detected signal. The device comprises a processor configured to distinguish the desired and the background signal, and to combine the detected signals of the different cells and/or moments in time, to quantify the targets.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: July 23, 2019
    Assignee: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Patent number: 10267733
    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: April 23, 2019
    Assignee: IMEC VZW
    Inventors: Pol Van Dorpe, Liesbet Lagae, Peter Peumans, Andim Stassen, Philippe Helin, Bert Du Bois, Simone Severi
  • Patent number: 10267998
    Abstract: Embodiments described herein relate to an imaging device, a method for imaging an object, and a photonic integrated circuit. The imaging device includes at least one photonic integrated circuit. The photonic integrated circuit includes an integrated waveguide for guiding a light signal. The photonic integrated circuit also includes a light coupler optically coupled to the integrated waveguide. The light coupler is adapted for directing the light signal out of a plane of the integrated waveguide as a light beam. The imaging device also includes a microfluidic channel for containing an object immersed in a fluid medium. The microfluidic channel is configured to enable, in operation of the imaging device, illumination of the object by the light beam. In addition, the imaging device includes at least one imaging detector positioned for imaging the object illuminated by the light beam.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: April 23, 2019
    Assignee: IMEC VZW
    Inventors: Dries Vercruysse, Pol Van Dorpe, Xavier Rottenberg, Tom Claes, Richard Stahl
  • Publication number: 20180188176
    Abstract: A sensor device for quantifying luminescent targets configured in an at least one dimensional pattern. The sensor device comprises a detector for obtaining an at least one dimensional pattern of measured signals, wherein the detector is adapted for detecting the luminescence of the luminescent targets, resulting in a measured pattern. The sensor device moreover comprises a processor configured to correlate the measured pattern with at least one reference pattern, so as to generate a measurement signal representative for the quantification of luminescent targets. The at least one reference pattern is a recorded pattern or an expected pattern. A recorded pattern is a pattern which is obtained by the detector before the measured pattern is obtained.
    Type: Application
    Filed: June 29, 2016
    Publication date: July 5, 2018
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Publication number: 20180188156
    Abstract: A sensor device for quantifying luminescent targets comprises a light source, a detector, a modulator, and a processor. The light source is adapted for exciting the luminescent target. The detector is adapted for detecting the luminescence of the luminescent target resulting in a measured signal which comprises a desired signal originating from the luminescent target and a background signal. The modulator is adapted for modulating a physical parameter resulting in a modulation of the desired signal which is different from the modulation of the background signal. The processor is configured to correlate the modulation of the physical parameter with the modulation of the desired signal and/or the modulation of the background signal.
    Type: Application
    Filed: June 30, 2016
    Publication date: July 5, 2018
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Publication number: 20180172587
    Abstract: A sensor device for quantifying luminescent targets. The device comprises a light source for exciting the targets, thus generating luminescence signals, and a detector for detecting these signals of the targets in a cell, resulting in a detected signal comprising a desired signal and a background signal. The detector has a spatial cell resolution and/or a time resolution that is so high that only a limited number of targets will be present in the cell when measuring at low concentration and/or that only a limited number of targets add to the cell in between two measurements. A change in the number of targets in the cell can be observed in the detected signal. The device comprises a processor configured to distinguish the desired and the background signal, and to combine the detected signals of the different cells and/or moments in time, to quantify the targets.
    Type: Application
    Filed: June 22, 2016
    Publication date: June 21, 2018
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Publication number: 20180172588
    Abstract: Sensor devices for quantifying luminescent targets are described herein. An example device comprises a light source for exciting the targets, thus generating luminescence signals and a detector for detecting these signals, resulting in a detected signal which comprises a desired signal originating from the targets and a background signal. It moreover comprises a bleaching device for bleaching of at least part of the sources generating the background signal and a processor configured to trigger the bleaching device to start bleaching, and to trigger the light source for exciting the remaining luminescent targets which are not bleached, and to trigger the detector for detecting the luminescence signal of the remaining luminescent targets, so as to generate a measurement signal representative for the quantification of the luminescent targets.
    Type: Application
    Filed: June 30, 2016
    Publication date: June 21, 2018
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Patent number: 9927559
    Abstract: The disclosure relates to wavelength-controlled directivity of all-dielectric optical nanoantennas. One example embodiment is an optical nanoantenna for directionally scattering light in a visible or a near-infrared spectral range. The optical nanoantenna includes a substrate. The optical nanoantenna also includes an antenna structure disposed on the substrate. The antenna structure includes a dielectric material having a refractive index that is higher than a refractive index of the substrate and a refractive index of a surrounding medium. The antenna structure includes a structure having two distinct end portions. The antenna structure is asymmetric with respect to at least one mirror reflection in a plane that is orthogonal to a plane of the substrate.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: March 27, 2018
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Jiaqi Li, Niels Verellen, Pol Van Dorpe, Dries Vercruysse
  • Publication number: 20180074271
    Abstract: There is provided an optical system for coupling light into a waveguide. The optical system comprising a coupler arranged at a portion of the waveguide. The coupler has a surface with a grating structure for directing light into the waveguide formed therein. A cladding layer embeds the coupler and an optical path changing structure is formed in the cladding layer. The optical path changing structure has a refractive surface and a reflective surface, each forming an acute angle with respect to the surface of the coupler. Light which enters the optical path changing structure through the refractive surface will be refracted and directed towards the reflective surface. The reflective surface is arranged to reflect the light such that it is directed towards the grating structure of the coupler along a direction suitable for efficient coupling of light into the waveguide.
    Type: Application
    Filed: August 29, 2017
    Publication date: March 15, 2018
    Inventors: Jeonghwan SONG, Pol Van DORPE, Giuseppe FIORENTINO, Philippe SOUSSAN, Xavier ROTTENBERG
  • Patent number: 9909992
    Abstract: The present disclosure relates to systems, methods, and sensors configured to characterize a radiation beam. At least one embodiment relates to an optical system. The optical system includes an optical radiation guiding system. The optical radiation guiding system includes a collimator configured to collimate the radiation beam into a collimated radiation beam. The optical radiation guiding system also includes a beam shaper configured to distribute power of the collimated radiation beam over a discrete number of line shaped fields. A spectrum of the collimated radiation beam entering the beam shaper is delivered to each of the discrete number of line shaped fields. The optical system further includes a spectrometer chip. The spectrometer chip is configured to process the spectrum of the collimated radiation beam in each of the discrete number of line shaped fields coming from the beam shaper.
    Type: Grant
    Filed: February 28, 2015
    Date of Patent: March 6, 2018
    Assignee: IMEC VZW
    Inventors: Pol Van Dorpe, Peter Peumans
  • Patent number: 9862601
    Abstract: A system (100) is described for characterizing and/or manipulating molecules. The system may especially be suitable for biological molecules, although the invention is not limited thereto. The system (100) comprises a substrate (110) comprising a nanostructure (120) being suitable for translocation of molecules through the nanostructure (120). It furthermore comprises a means (210) for translocating molecules through the nanostructure (120) and a plasmonic force field generating means (130) adapted for influencing the translocation speed of the particle by applying a plasmonic force field at the nanostructure (120). A corresponding method also is described.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: January 9, 2018
    Assignees: IMEC, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Chang Chen, Pol Van Dorpe, Kai Cheng, Tim Stakenborg, Liesbet Lagae
  • Publication number: 20170351034
    Abstract: Embodiments described herein relate to an imaging device, a method for imaging an object, and a photonic integrated circuit. The imaging device includes at least one photonic integrated circuit. The photonic integrated circuit includes an integrated waveguide for guiding a light signal. The photonic integrated circuit also includes a light coupler optically coupled to the integrated waveguide. The light coupler is adapted for directing the light signal out of a plane of the integrated waveguide as a light beam. The imaging device also includes a microfluidic channel for containing an object immersed in a fluid medium. The microfluidic channel is configured to enable, in operation of the imaging device, illumination of the object by the light beam. In addition, the imaging device includes at least one imaging detector positioned for imaging the object illuminated by the light beam.
    Type: Application
    Filed: December 28, 2015
    Publication date: December 7, 2017
    Applicant: IMEC VZW
    Inventors: Dries Vercruysse, Pol Van Dorpe, Xavier Rottenberg, Tom Claes, Richard Stahl
  • Patent number: 9816935
    Abstract: The present disclosure relates to structures, systems, and methods for characterizing one or more fluorescent particles. At least one embodiment relates to an integrated waveguide structure. The integrated waveguide structure includes a substrate. The integrated waveguide structure also includes a waveguide layer arranged on top of the substrate. The waveguide layer includes one or more excitation waveguides, one or more emission waveguides, and a particle radiation coupler, which includes a resonator element. In addition, the integrated waveguide structure includes one or more sensing sites configured with respect to the one or more excitation waveguides and the one or more emission waveguides such that a fluorescent particle at one of the sensing sites is activated by an excitation radiation transmitted via the one or more excitation waveguides and radiation emitted by the fluorescent particle is coupled into at least one of the emission waveguides by the particle radiation coupler.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: November 14, 2017
    Assignee: IMEC VZW
    Inventors: Peter Peumans, Pol Van Dorpe
  • Publication number: 20170276841
    Abstract: The disclosure relates to wavelength-controlled directivity of all-dielectric optical nano-antennas. One example embodiment is an optical nanoantenna for directionally scattering light in a visible or a near-infrared spectral range. The optical nanoantenna includes a substrate. The optical nanoantenna also includes an antenna structure disposed on the substrate. The antenna structure includes a dielectric material having a refractive index that is higher than a refractive index of the substrate and a refractive index of a surrounding medium. The antenna structure includes a structure having two distinct end portions. The antenna structure is asymmetric with respect to at least one mirror reflection in a plane that is orthogonal to a plane of the substrate.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 28, 2017
    Applicants: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Jiaqi Li, Niels Verellen, Pol Van Dorpe, Dries Vercruysse