Patents by Inventor Reza Navid

Reza Navid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11711246
    Abstract: A driver circuit of a PAM-N transmitting device transmits a PAM-N signal via a communication channel, wherein N is greater than 2, and the PAM-N signal has N signal levels corresponding to N symbols. A PAM-N receiving device receives the PAM-N signal. The PAM-N receiving device generates distortion information indicative of a level of distortion corresponding to inequalities in voltage differences between the N signal levels. The PAM-N receiving device transmits to the PAM-N transmitting device the distortion information indicative of the level of the distortion. The PAM-N transmitting device receives the distortion information. The PAM-N transmitting device adjusts one or more drive strength parameters of the driver circuit of the PAM-N transmitting device based on the distortion information.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: July 25, 2023
    Assignee: Rambus Inc.
    Inventor: Reza Navid
  • Publication number: 20220286329
    Abstract: A driver circuit of a PAM-N transmitting device transmits a PAM-N signal via a communication channel, wherein N is greater than 2, and the PAM-N signal has N signal levels corresponding to N symbols. A PAM-N receiving device receives the PAM-N signal. The PAM-N receiving device generates distortion information indicative of a level of distortion corresponding to inequalities in voltage differences between the N signal levels. The PAM-N receiving device transmits to the PAM-N transmitting device the distortion information indicative of the level of the distortion. The PAM-N transmitting device receives the distortion information. The PAM-N transmitting device adjusts one or more drive strength parameters of the driver circuit of the PAM-N transmitting device based on the distortion information.
    Type: Application
    Filed: April 1, 2022
    Publication date: September 8, 2022
    Inventor: Reza Navid
  • Patent number: 11323297
    Abstract: A driver circuit of a PAM-N transmitting device transmits a PAM-N signal via a communication channel, wherein N is greater than 2, and the PAM-N signal has N signal levels corresponding to N symbols. A PAM-N receiving device receives the PAM-N signal. The PAM-N receiving device generates distortion information indicative of a level of distortion corresponding to inequalities, in voltage differences between the N signal levels. The PAM-N receiving device transmits to the PAM-N transmitting device the distortion information indicative of the level of the distortion. The PAM-N transmitting device receives the distortion information. The PAM-N transmitting device adjusts one or more drive strength parameters of the driver circuit of the PAM-N transmitting device based on the distortion information.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: May 3, 2022
    Assignee: Rambus Inc.
    Inventor: Reza Navid
  • Patent number: 11316726
    Abstract: Receiver circuitries having multiple branches, such as unrolled feedback equalizers and fractional-rate receivers, may present differences between filtering elements of different branches with common filter inputs. Embodiments include devices capable of calibration that compensates such differences. The devices may be capable of introducing front-end offsets to emphasize the mismatches, and sweep filter input values to calculate the mismatches, and introducing offsets in the branches to compensate for the mismatches. Methods for use of the calibration devices are also described.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 26, 2022
    Assignee: Intel Corporation
    Inventors: Dinesh Patil, Jihong Ren, Reza Navid
  • Publication number: 20210144031
    Abstract: A driver circuit of a PAM-N transmitting device transmits a PAM-N signal via a communication channel, wherein N is greater than 2, and the PAM-N signal has N signal levels corresponding to N symbols. A PAM-N receiving device receives the PAM-N signal. The PAM-N receiving device generates distortion information indicative of a level of distortion corresponding to inequalities in voltage differences between the N signal levels. The PAM-N receiving device transmits to the PAM-N transmitting device the distortion information indicative of the level of the distortion. The PAM-N transmitting device receives the distortion information. The PAM-N transmitting device adjusts one or more drive strength parameters of the driver circuit of the PAM-N transmitting device based on the distortion information.
    Type: Application
    Filed: December 9, 2020
    Publication date: May 13, 2021
    Inventor: Reza Navid
  • Patent number: 10892920
    Abstract: A driver circuit of a PAM-N transmitting device transmits a PAM-N signal via a communication channel, wherein N is greater than 2, and the PAM-N signal has N signal levels corresponding to N symbols. A PAM-N receiving device receives the PAM-N signal. The PAM-N receiving device generates distortion information indicative of a level of distortion corresponding to inequalities in voltage differences between the N signal levels. The PAM-N receiving device transmits to the PAM-N transmitting device the distortion information indicative of the level of the distortion. The PAM-N transmitting device receives the distortion information. The PAM-N transmitting device adjusts one or more drive strength parameters of the driver circuit of the PAM-N transmitting device based on the distortion information.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 12, 2021
    Assignee: Rambus Inc.
    Inventor: Reza Navid
  • Publication number: 20200145261
    Abstract: A driver circuit of a PAM-N transmitting device transmits a PAM-N signal via a communication channel, wherein N is greater than 2, and the PAM-N signal has N signal levels corresponding to N symbols. A PAM-N receiving device receives the PAM-N signal. The PAM-N receiving device generates distortion information indicative of a level of distortion corresponding to inequalities in voltage differences between the N signal levels. The PAM-N receiving device transmits to the PAM-N transmitting device the distortion information indicative of the level of the distortion. The PAM-N transmitting device receives the distortion information. The PAM-N transmitting device adjusts one or more drive strength parameters of the driver circuit of the PAM-N transmitting device based on the distortion information.
    Type: Application
    Filed: August 2, 2018
    Publication date: May 7, 2020
    Inventor: Reza Navid
  • Patent number: 10541649
    Abstract: A phase-locked loop circuit comprises a multi-phase oscillator having a plurality of coupled oscillators. A calibration module detects mismatches between frequency characteristics of the different oscillators in the phase-locked loop circuit during a calibration process. The calibration module then calibrates the various oscillators to compensate for the detected mismatch. Once calibrated, the phase-locked loop circuit can operate with little or no performance degradation despite the mismatch in frequency characteristics between the different oscillators.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: January 21, 2020
    Assignee: Rambus Inc.
    Inventors: Mohammad Hekmat, Reza Navid
  • Publication number: 20200007379
    Abstract: Receiver circuitries having multiple branches, such as unrolled feedback equalizers and fractional-rate receivers, may present differences between filtering elements of different branches with common filter inputs. Embodiments include devices capable of calibration that compensates such differences. The devices may be capable of introducing front-end offsets to emphasize the mismatches, and sweep filter input values to calculate the mismatches, and introducing offsets in the branches to compensate for the mismatches. Methods for use of the calibration devices are also described.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Inventors: Dinesh Patil, Jihong Ren, Reza Navid
  • Patent number: 10447427
    Abstract: A receiver frontend having a high-frequency AC-coupled path in parallel to a low-frequency feed-forward path for baseline correction. The low-frequency path blocks the DC common-mode voltage of the input differential signal pair, but passes low-frequency differential signal components (e.g., long strings of a single value, or disparities in the number of 1's and 0's over a long period of time.) The low-frequency path can include a passive network for level shifting and extending the range of acceptable common-mode input voltages. The low-frequency path can also include a differential (e.g., transconductance) amplifier to isolate the common-mode input voltage from the output of the baseline wander correction circuit.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 15, 2019
    Assignee: Rambus Inc.
    Inventor: Reza Navid
  • Patent number: 10389303
    Abstract: Circuitry capable of performing fractional clock multiplication by using an injection-locked oscillator is described. Some embodiments described herein perform fractional clock multiplication by periodically changing the injection location, from a set of injection locations, where the injection signal is injected and/or by periodically changing a phase, from a set of phases, of the injection signal that is injected into the ILO.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: August 20, 2019
    Assignee: Rambus Inc.
    Inventors: Masum Hossain, Farshid Aryanfar, Mohammad Hekmat, Reza Navid
  • Publication number: 20190140768
    Abstract: A receiver frontend having a high-frequency AC-coupled path in parallel to a low-frequency feed-forward path for baseline correction. The low-frequency path blocks the DC common-mode voltage of the input differential signal pair, but passes low-frequency differential signal components (e.g., long strings of a single value, or disparities in the number of 1's and 0's over a long period of time.) The low-frequency path can include a passive network for level shifting and extending the range of acceptable common-mode input voltages. The low-frequency path can also include a differential (e.g., transconductance) amplifier to isolate the common-mode input voltage from the output of the baseline wander correction circuit.
    Type: Application
    Filed: October 12, 2018
    Publication date: May 9, 2019
    Inventor: Reza NAVID
  • Patent number: 10243571
    Abstract: A source-synchronous clocking signal is sampled by an edge sampler triggered by a phase-adjusted version of the clocking signal. The output of the edge sampler is used as a phase-error indicator for a filtered feedback loop that aligns the phase-adjusted clocking signal to minimize, on average, the difference between the received source-synchronous clocking signal and the phase-adjusted version of the clocking signal minus the setup time of the sampler. This forms a delay-locked loop configuration. The phase adjustment information used to produce the aligned phase-adjusted clocking signal is then to produce a receiver clocking signal that is used to sample the source-synchronous data signal.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 26, 2019
    Assignee: Rambus Inc.
    Inventor: Reza Navid
  • Patent number: 10135566
    Abstract: A receiver frontend having a high-frequency AC-coupled path in parallel to a low-frequency feed-forward path for baseline correction. The low-frequency path blocks the DC common-mode voltage of the input differential signal pair, but passes low-frequency differential signal components (e.g., long strings of a single value, or disparities in the number of 1's and 0's over a long period of time.) The low-frequency path can include a passive network for level shifting and extending the range of acceptable common-mode input voltages. The low-frequency path can also include a differential (e.g., transconductance) amplifier to isolate the common-mode input voltage from the output of the baseline wander correction circuit.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 20, 2018
    Assignee: Rambus Inc.
    Inventor: Reza Navid
  • Publication number: 20180278210
    Abstract: Circuitry capable of performing fractional clock multiplication by using an injection-locked oscillator is described. Some embodiments described herein perform fractional clock multiplication by periodically changing the injection location, from a set of injection locations, where the injection signal is injected and/or by periodically changing a phase, from a set of phases, of the injection signal that is injected into the ILO.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 27, 2018
    Inventors: Masum Hossain, Farshid Aryanfar, Mohammad Hekmat, Reza Navid
  • Patent number: 9998306
    Abstract: A transmit circuit can be configured to output two-level pulse amplitude modulation (PAM-2) or four-level pulse amplitude modulation (PAM-4). In the PAM-2 mode, pre-tap feed-forward equalization (FFE) and post-tap FFE can be applied to the PAM-2 signal by pre-taps and post-taps, respectively. In the PAM-4 mode, at least one post-tap is repurposed to generate, along with the main tap, the main PAM-4 signaling levels. At least one PAM-2 FFE tap is repurposed to apply FFE in the PAM-4 mode.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: June 12, 2018
    Assignee: Rambus Inc.
    Inventor: Reza Navid
  • Patent number: 9954489
    Abstract: Circuitry capable of performing fractional clock multiplication by using an injection-locked oscillator is described. Some embodiments described herein perform fractional clock multiplication by periodically changing the injection location, from a set of injection locations, where the injection signal is injected and/or by periodically changing a phase, from a set of phases, of the injection signal that is injected into the ILO.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: April 24, 2018
    Assignee: Rambus Inc.
    Inventors: Masum Hossain, Farshid Aryanfar, Mohammad Hekmat, Reza Navid
  • Publication number: 20180083639
    Abstract: A source-synchronous clocking signal is sampled by an edge sampler triggered by a phase-adjusted version of the clocking signal. The output of the edge sampler is used as a phase-error indicator for a filtered feedback loop that aligns the phase-adjusted clocking signal to minimize, on average, the difference between the received source-synchronous clocking signal and the phase-adjusted version of the clocking signal minus the setup time of the sampler. This forms a delay-locked loop configuration. The phase adjustment information used to produce the aligned phase-adjusted clocking signal is then to produce a receiver clocking signal that is used to sample the source-synchronous data signal.
    Type: Application
    Filed: August 30, 2017
    Publication date: March 22, 2018
    Inventor: Reza Navid
  • Publication number: 20180019706
    Abstract: Circuitry capable of performing fractional clock multiplication by using an injection-locked oscillator is described. Some embodiments described herein perform fractional clock multiplication by periodically changing the injection location, from a set of injection locations, where the injection signal is injected and/or by periodically changing a phase, from a set of phases, of the injection signal that is injected into the ILO.
    Type: Application
    Filed: June 23, 2017
    Publication date: January 18, 2018
    Inventors: Masum Hossain, Farshid Aryanfar, Mohammad Hekmat, Reza Navid
  • Publication number: 20170359027
    Abstract: A phase-locked loop circuit comprises a multi-phase oscillator having a plurality of coupled oscillators. A calibration module detects mismatches between frequency characteristics of the different oscillators in the phase-locked loop circuit during a calibration process. The calibration module then calibrates the various oscillators to compensate for the detected mismatch. Once calibrated, the phase-locked loop circuit can operate with little or no performance degradation despite the mismatch in frequency characteristics between the different oscillators.
    Type: Application
    Filed: June 29, 2017
    Publication date: December 14, 2017
    Inventors: Mohammad Hekmat, Reza Navid