Patents by Inventor Richard Hamilton SEWELL

Richard Hamilton SEWELL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11004987
    Abstract: Methods of fabricating a solar cell, and system for electrically coupling solar cells, are described. In an example, the methods for fabricating a solar cell can include placing conductive wires in a wire guide, where conductive wires are placed over a first semiconductor substrate having first doped regions and second doped regions. The method can include aligning the conductive wires over the first and second doped regions, where the wire guide aligns the conductive wires substantially parallel to the first and second doped regions. The method can include bonding the conductive wires to the first and second doped regions. The bonding can include applying a mechanical force to the semiconductor substrate via a roller or bonding head of the wire guide, where the wire guide inhibits lateral movement of the conductive wires during the bonding.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 11, 2021
    Assignees: SunPower Corporation, Total Marketing Services and Total Energies Nouvelles Activites USA
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Nils-Peter Harder, Douglas Rose
  • Publication number: 20210098641
    Abstract: Wire-based metallization and stringing techniques for solar cells, and the resulting solar cells, modules, and equipment, are described. In an example, a string of solar cells includes a plurality of back-contact solar cells, wherein each of the plurality of back-contact solar cells includes P-type and N-type doped diffusion regions. A plurality of conductive wires is disposed over a back surface of each of the plurality of solar cells, wherein each of the plurality of conductive wires is substantially parallel to the P-type and N-type doped diffusion regions of each of the plurality of solar cells. One or more of the plurality of conductive wires adjoins a pair of adjacent solar cells of the plurality of solar cells and has a relief feature between the pair of adjacent solar cells.
    Type: Application
    Filed: September 25, 2020
    Publication date: April 1, 2021
    Inventors: Richard Hamilton Sewell, Matthieu Minault Reich, Andrea R. Bowring, Arbaz Shakir, Ryan Reagan, Matthew Matsumoto
  • Publication number: 20210057593
    Abstract: Approaches for fabricating foil-based metallization of solar cells based on a leave-in etch mask, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes metal foil portions in alignment with corresponding ones of the alternating N-type and P-type semiconductor regions. A patterned wet etchant-resistant polymer layer is disposed on the conductive contact structure. Portions of the patterned wet etchant-resistant polymer layer are disposed on and in alignment with the metal foil portions.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 25, 2021
    Inventors: Richard Hamilton Sewell, David Fredric Joel Kavulak, Taeseok Kim, Gabriel Harley
  • Patent number: 10923616
    Abstract: A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including a conductive foil bonded to the semiconductor region.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: February 16, 2021
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, Michel Arsène Olivier Ngamo Toko, Matthieu Moors, Jens Dirk Moschner
  • Publication number: 20210020794
    Abstract: Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed material region disposed on each of the alternating N-type and P-type semiconductor regions. A metal foil is disposed on the plurality of metal seed material regions, the metal foil having anodized portions isolating metal regions of the metal foil corresponding to the alternating N-type and P-type semiconductor regions.
    Type: Application
    Filed: April 6, 2020
    Publication date: January 21, 2021
    Inventors: Gabriel Harley, Taeseok Kim, Richard Hamilton Sewell, Michael Morse, David D. Smith, Matthieu Moors, Jens-Dirk Moschner
  • Patent number: 10737475
    Abstract: A thermo-compression bonding tool with a high temperature elastic element, and methods of bonding a metal sheet to a substrate using a thermo-compression bonding tool are described. In an example, a system for bonding a metal sheet to a substrate includes a stage to support the substrate and an elastic roller located above the stage. The elastic roller includes a high temperature material. The system also includes a heated backing plate located above the elastic roller. The backing plate is configured to apply pressure and heat to the elastic roller as the elastic roller rolls across a metal sheet disposed above the substrate.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 11, 2020
    Assignee: SunPower Corporation
    Inventors: Richard Hamilton Sewell, Thomas P. Pass
  • Patent number: 10727369
    Abstract: Methods of fabricating a solar cell, and system for electrically coupling solar cells, are described. In an example, the methods for fabricating a solar cell can include forming a first cut portion from a conductive foil. The method can also include aligning the first cut portion to a first doped region of a first semiconductor substrate. The method can include bonding the first cut portion to the first doped region of the first semiconductor substrate. The method can also include aligning and bonding a plurality of cut portions of the conductive foil to a plurality of semiconductor substrates.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: July 28, 2020
    Assignee: SunPower Corporation
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse
  • Publication number: 20200220040
    Abstract: Disclosed herein are approaches to fabricating solar cells, solar cell strings and solar modules using roll-to-roll foil-based metallization approaches. Methods disclosed herein can comprise the steps of providing at least one solar cell wafer on a first roll unit and conveying a metal foil to the first roll unit. The metal foil can be coupled to the solar cell wafer on the first roll unit to produce a unified pairing of the metal foil and the solar cell wafer. We disclose solar energy collection devices and manufacturing methods thereof enabling reduction of manufacturing costs due to simplification of the manufacturing process by a high throughput foil metallization process.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Richard Hamilton Sewell, Gabriela Elena Bunea
  • Publication number: 20200220031
    Abstract: Methods of fabricating a solar cell, and system for electrically coupling solar cells, are described. In an example, the methods for fabricating a solar cell can include placing conductive wires in a wire guide, where conductive wires are placed over a first semiconductor substrate having first doped regions and second doped regions. The method can include aligning the conductive wires over the first and second doped regions, where the wire guide aligns the conductive wires substantially parallel to the first and second doped regions. The method can include bonding the conductive wires to the first and second doped regions. The bonding can include applying a mechanical force to the semiconductor substrate via a roller or bonding head of the wire guide, where the wire guide inhibits lateral movement of the conductive wires during the bonding.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Nils-Peter Harder, Douglas Rose
  • Publication number: 20200212248
    Abstract: A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including a conductive foil bonded to the semiconductor region.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Inventors: Richard Hamilton Sewell, Michel Arsène Olivier Ngamo Toko, Matthieu Moors, Jens Dirk Moschner
  • Patent number: 10672924
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: June 2, 2020
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Publication number: 20200152813
    Abstract: Approaches for fabricating one-dimensional metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate and parallel along a first direction to form a one-dimensional layout of emitter regions for the solar cell. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal lines corresponding to the plurality of alternating N-type and P-type semiconductor regions. The plurality of metal lines is parallel along the first direction to form a one-dimensional layout of a metallization layer for the solar cell.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Richard Hamilton Sewell, David Fredric Joel Kavulak, Lewis Abra, Thomas P. Pass, Taeseok Kim, Matthieu Moors, Benjamin Ian Hsia, Gabriel Harley
  • Patent number: 10644170
    Abstract: Methods of fabricating a solar cell, and system for electrically coupling solar cells, are described. In an example, the methods for fabricating a solar cell can include placing conductive wires in a wire guide, where conductive wires are placed over a first semiconductor substrate having first doped regions and second doped regions. The method can include aligning the conductive wires over the first and second doped regions, where the wire guide aligns the conductive wires substantially parallel to the first and second doped regions. The method can include bonding the conductive wires to the first and second doped regions. The bonding can include applying a mechanical force to the semiconductor substrate via a roller or bonding head of the wire guide, where the wire guide inhibits lateral movement of the conductive wires during the bonding.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 5, 2020
    Assignees: SunPower Corporation, Total Marketing Services and Total Energies Nouvelles Activites USA
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Nils-Peter Harder, Douglas Rose
  • Patent number: 10622505
    Abstract: A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including a conductive foil bonded to the semiconductor region.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: April 14, 2020
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, Michel Arsène Olivier Ngamo Toko, Matthieu Moors, Jens Dirk Moschner
  • Patent number: 10622227
    Abstract: A multi-axis flattening tool and method are described. In an example, the multi-axis flattening tool includes a support structure to constrain a bowed wafer along a support perimeter, and a pair of flattening structures independently movable relative to the support structure. For example, a first flattening structure may grip the wafer within the support perimeter and move axially relative to the support structure to bend the wafer about a first plane, and a second flattening structure may grip the wafer within the support perimeter and move axially relative to the support structure to bend the wafer about a second plane orthogonal to the first plane. The multi-axis bending of the wafer may flatten the wafer.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: April 14, 2020
    Assignee: SunPower Corporation
    Inventor: Richard Hamilton Sewell
  • Patent number: 10615296
    Abstract: Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed material region disposed on each of the alternating N-type and P-type semiconductor regions. A metal foil is disposed on the plurality of metal seed material regions, the metal foil having anodized portions isolating metal regions of the metal foil corresponding to the alternating N-type and P-type semiconductor regions.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: April 7, 2020
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Gabriel Harley, Taeseok Kim, Richard Hamilton Sewell, Michael Morse, David D. Smith, Matthieu Moors, Jens-Dirk Moschner
  • Patent number: 10593825
    Abstract: Disclosed herein are approaches to fabricating solar cells, solar cell strings and solar modules using roll-to-roll foil-based metallization approaches. Methods disclosed herein can comprise the steps of providing at least one solar cell wafer on a first roll unit and conveying a metal foil to the first roll unit. The metal foil can be coupled to the solar cell wafer on the first roll unit to produce a unified pairing of the metal foil and the solar cell wafer. We disclose solar energy collection devices and manufacturing methods thereof enabling reduction of manufacturing costs due to simplification of the manufacturing process by a high throughput foil metallization process.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: March 17, 2020
    Assignee: SunPower Corporation
    Inventors: Richard Hamilton Sewell, Gabriela Elena Bunea
  • Patent number: 10535790
    Abstract: Approaches for fabricating one-dimensional metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate and parallel along a first direction to form a one-dimensional layout of emitter regions for the solar cell. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal lines corresponding to the plurality of alternating N-type and P-type semiconductor regions. The plurality of metal lines is parallel along the first direction to form a one-dimensional layout of a metallization layer for the solar cell.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 14, 2020
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, David Fredric Joel Kavulak, Lewis Abra, Thomas P. Pass, Taeseok Kim, Matthieu Moors, Benjamin Ian Hsia, Gabriel Harley
  • Publication number: 20190312166
    Abstract: A method of fabricating solar cell, solar laminate and/or solar module string is provided. The method may include: locating a metal foil over a plurality of semiconductor substrates; exposing the metal foil to laser beam over selected portions of the plurality of semiconductor substrates, wherein exposing the metal foil to the laser beam forms a plurality conductive contact structures having of locally deposited metal portion electrically connecting the metal foil to the semiconductor substrates at the selected portions; and selectively removing portions of the metal foil, wherein remaining portions of the metal foil extend between at least two of the plurality of semiconductor substrates.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 10, 2019
    Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, David C. Okawa, David F. Kavulak, Lewis C. Abra, George G. Correos, Richard Hamilton Sewell, Ryan Reagan, Tamir Lance, Thierry Nguyen
  • Publication number: 20190305167
    Abstract: Wire-based metallization and stringing techniques for solar cells, and the resulting solar cells, modules, and equipment, are described. In an example, a substrate has a surface. A plurality of N-type and P-type semiconductor regions is disposed in or above the surface of the substrate. A conductive contact structure is disposed on the plurality of N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of conductive wires, each conductive wire of the plurality of conductive wires essentially continuously bonded directly to a corresponding one of the N-type and P-type semiconductor regions.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Douglas Rose, Lewis Abra