Patents by Inventor Richard J. Dischler

Richard J. Dischler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11269805
    Abstract: Embodiments herein may present a multi-tile processor including a plurality of processor tiles, and a plurality of interconnects selectively coupling the plurality of processor tiles to each other. A first processor tile may include a memory to store a bulletin board to hold a message, an execution unit, and an encapsulated software module. The encapsulated software module may select a second processor tile coupled with the first processor tile by an interconnect to be a part of a signal pathway. The second processor tile may be selected based on a selection criterion of the signal pathway and the message held in the bulletin board. The encapsulated software module may post and read a message at the bulletin board stored in the memory, or read a message from a bulletin board stored in a memory of the second processor tile. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: March 8, 2022
    Assignee: Intel Corporation
    Inventors: William J. Butera, Simon C. Steely, Jr., Richard J. Dischler
  • Publication number: 20220029839
    Abstract: Technologies for densely packaging network components for large scale indirect topologies include group of switches. The group of switches includes a stack of node switches that includes a first set of ports and a stack of global switches that includes a second set of ports. The stack of node switches are oriented orthogonally to the stack of global switches. Additionally, the first set of ports are oriented towards the second set of ports and the node switches are connected to the global switches through the first and second sets of ports. Other embodiments are also described and claimed.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 27, 2022
    Inventors: Mario Flajslik, Eric R. Borch, Michael A. Parker, Richard J. Dischler
  • Publication number: 20210376437
    Abstract: A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Sasha N. Oster, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 11153105
    Abstract: Technologies for densely packaging network components for large scale indirect topologies include group of switches. The group of switches includes a stack of node switches that includes a first set of ports and a stack of global switches that includes a second set of ports. The stack of node switches are oriented orthogonally to the stack of global switches. Additionally, the first set of ports are oriented towards the second set of ports and the node switches are connected to the global switches through the first and second sets of ports. Other embodiments are also described and claimed.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 19, 2021
    Assignee: Intel Corporation
    Inventors: Mario Flajslik, Eric R. Borch, Michael A. Parker, Richard J. Dischler
  • Patent number: 11095012
    Abstract: A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Sasha N. Oster, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 11031666
    Abstract: An apparatus comprises a waveguide including: an elongate waveguide core including a dielectric material, wherein the waveguide core includes at least one space arranged lengthwise along the waveguide core that is void of the dielectric material; and a conductive layer arranged around the waveguide core.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Sasha N. Oster, Georgios C. Dogiamis, Telesphor Kamgaing, Shawna M. Liff, Aleksandar Aleksov, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 11026351
    Abstract: The present disclosure describes embodiments of apparatuses and methods related to a computing apparatus with a closed cooling loop thermally coupled to one or more processors disposed on a circuit board of the computing apparatus. The closed cooling loop circulates a dielectric fluid to absorb heat from the processor. A portion of the dielectric fluid is evaporated from the processor heat absorbed by the dielectric fluid. A heat exchanger is coupled to the circuit board and thermally coupled to the closed cooling loop. The heat exchanger is to include a coolant flow to remove heat from the dielectric fluid circulated through the portion of the closed cooling loop thermally coupled to the heat exchanger. A vapor portion of the dielectric fluid is condensed from the heat removed by the coolant flow. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 1, 2021
    Assignee: Intel Corporation
    Inventors: Devdatta P. Kulkarni, Richard J. Dischler
  • Patent number: 11024933
    Abstract: A method of making a waveguide, comprises: extruding a first dielectric material as a waveguide core of the waveguide, wherein the waveguide core is elongate; and coextruding an outer layer with the waveguide core, wherein the outer layer is arranged around the waveguide core.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 1, 2021
    Assignee: Intel Corporation
    Inventors: Brandon M. Rawlings, Shawna M. Liff, Sasha N. Oster, Georgios C. Dogiamis, Telesphor Kamgaing, Adel A. Elsherbini, Aleksandar Aleksov, Johanna M. Swan, Richard J. Dischler
  • Patent number: 10950919
    Abstract: An apparatus comprises a waveguide section including an outer layer of conductive material tubular in shape and having multiple ends; and a joining feature on at least one of the ends of the waveguide section configured for joining to a second separate waveguide section.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 16, 2021
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Georgios C. Dogiamis, Sasha N. Oster, Adel A. Elsherbini, Brandon M. Rawlings, Aleksandar Aleksov, Shawna M. Liff, Richard J. Dischler, Johanna M. Swan
  • Patent number: 10891254
    Abstract: Embodiments relate to a computational device including multiple processor tiles on a die that may have multiple switchable topologies. A topology of the computational device may include one or more virtual circuits. A virtual circuit may include multiple processor tiles. A processor tile of a virtual circuit of a topology may include a configuration vector to control a connection between the processor tile and a neighboring processor tile. A first topology of the computation device may correspond to a first phase of a computation of a program, and a second topology of the computation device may correspond to a second phase of the computation of the program. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: William J. Butera, Simon C. Steely, Jr., Richard J. Dischler
  • Patent number: 10784204
    Abstract: Integrated circuit (IC) chip die to die channel interconnect configurations (systems and methods for their manufacture) may improve signaling to and through a single ended bus data signal communication channel by including on-die induction structures; on-die interconnect features; on-package first level die bump designs and ground webbing structures; on-package high speed horizontal data signal transmission lines; on-package vertical data signal transmission interconnects; and/or on-package electro-optical (EO) connectors in various die to die interconnect configurations for improved signal connections and transmission through a data signal channel extending through one or more semiconductor device package devices, that may include an electro-optical (EO) connector upon which at least one package device may be mounted, and/or be semiconductor device packages in a package-on-package configuration.
    Type: Grant
    Filed: July 2, 2016
    Date of Patent: September 22, 2020
    Assignee: Intel Corporation
    Inventors: Kemal Aygun, Richard J. Dischler, Jeff C. Morriss, Zhiguo Qian, Wilfred Gomes, Yu Amos Zhang, Ram S. Viswanath, Rajasekaran Swaminathan, Sriram Srinivasan, Yidnekachew S. Mekonnen, Sanka Ganesan, Eduard Roytman, Mathew J. Manusharow
  • Publication number: 20200245511
    Abstract: The present disclosure describes embodiments of apparatuses and methods related to a computing apparatus with a closed cooling loop thermally coupled to one or more processors disposed on a circuit board of the computing apparatus. The closed cooling loop circulates a dielectric fluid to absorb heat from the processor. A portion of the dielectric fluid is evaporated from the processor heat absorbed by the dielectric fluid. A heat exchanger is coupled to the circuit board and thermally coupled to the closed cooling loop. The heat exchanger is to include a coolant flow to remove heat from the dielectric fluid circulated through the portion of the closed cooling loop thermally coupled to the heat exchanger. A vapor portion of the dielectric fluid is condensed from the heat removed by the coolant flow. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 25, 2015
    Publication date: July 30, 2020
    Inventors: Devdatta P. KULKARNI, Richard J. DISCHLER
  • Patent number: 10727160
    Abstract: Thermal management technology is disclosed. A thermal management component in accordance with the present disclosure can comprise a heat spreader having a plurality of microchannels. The thermal management component can also comprise a plurality of fins directly coupled to the heat spreader to provide surface area for heat transfer. In another aspect, a thermal management component can comprise a heat spreader having a plurality of microchannels, and an inlet port and an outlet port in fluid communication with the plurality of microchannels. The thermal management component can also comprise a plurality of fins coupled to the heat spreader to provide surface area for heat transfer. Additionally, the thermal management component can comprise a fluid conduit thermally coupled to the plurality of fins and fluidly coupled to the outlet port and the inlet port to facilitate flow of a heat transfer fluid through the microchannels and the fluid conduit.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 28, 2020
    Assignee: Intel Corporation
    Inventors: Devdatta P. Kulkarni, Richard J. Dischler, Je-Young Chang
  • Publication number: 20200066641
    Abstract: Integrated circuit (IC) chip die to die channel interconnect configurations (systems and methods for their manufacture) may improve signaling to and through a single ended bus data signal communication channel by including on-die induction structures; on-die interconnect features; on-package first level die bump designs and ground webbing structures; on-package high speed horizontal data signal transmission lines; on-package vertical data signal transmission interconnects; and/or on-package electro-optical (EO) connectors in various die to die interconnect configurations for improved signal connections and transmission through a data signal channel extending through one or more semiconductor device package devices, that may include an electro-optical (EO) connector upon which at least one package device may be mounted, and/or be semiconductor device packages in a package-on-package configuration.
    Type: Application
    Filed: July 2, 2016
    Publication date: February 27, 2020
    Inventors: Kemal AYGUN, Richard J. DISCHLER, Jeff C. MORRISS, Zhiguo QIAN, Wilfred GOMES, Yu Amos ZHANG, Ram S. VISWANATH, Rajasekaran SWAMINATHAN, Sriram SRINIVASAN, Yidnekachew S. MEKONNEN, Sanka GANESAN, Eduard ROYTMAN, Mathew J. MANUSHAROW
  • Patent number: 10498379
    Abstract: Wireless interconnects are shown on flexible cables for communication between computing platforms. One example has an integrated circuit chip, a package substrate to carry the integrated circuit chip, the package substrate having conductive connectors to connect the integrated circuit chip to external components, a cable on the package substrate coupled to the integrated circuit chip at one end, a radio chip on the cable coupled to the cable at the other end, the radio chip to modulate data over a carrier and to transmit the modulated data, and a waveguide transition coupled to a dielectric waveguide to receive the transmitted modulated data from the radio and to couple it into the waveguide, the waveguide to carry the modulated data to an external component.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: December 3, 2019
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Richard J. Dischler
  • Publication number: 20190206764
    Abstract: Thermal management technology is disclosed. A thermal management component in accordance with the present disclosure can comprise a heat spreader having a plurality of microchannels. The thermal management component can also comprise a plurality of fins directly coupled to the heat spreader to provide surface area for heat transfer. In another aspect, a thermal management component can comprise a heat spreader having a plurality of microchannels, and an inlet port and an outlet port in fluid communication with the plurality of microchannels. The thermal management component can also comprise a plurality of fins coupled to the heat spreader to provide surface area for heat transfer. Additionally, the thermal management component can comprise a fluid conduit thermally coupled to the plurality of fins and fluidly coupled to the outlet port and the inlet port to facilitate flow of a heat transfer fluid through the microchannels and the fluid conduit.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Applicant: Intel Corporation
    Inventors: Devdatta P. Kulkarni, Richard J. Dischler, Je-Young Chang
  • Publication number: 20190198961
    Abstract: A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
    Type: Application
    Filed: September 30, 2016
    Publication date: June 27, 2019
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Sasha N. Oster, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Publication number: 20190198965
    Abstract: An apparatus comprises a waveguide section including an outer layer of conductive material tubular in shape and having multiple ends; and a joining feature on at least one of the ends of the waveguide section configured for joining to a second separate waveguide section.
    Type: Application
    Filed: September 30, 2016
    Publication date: June 27, 2019
    Inventors: Telesphor Kamgaing, Georgios C. Dogiamis, Sasha N. Oster, Adel A. Elsherbini, Brandon M. Rawlings, Aleksandar Aleksov, Shawna M. Liff, Richard J. Dischler, Johanna M. Swan
  • Publication number: 20190173149
    Abstract: An apparatus comprises a waveguide including: an elongate waveguide core including a dielectric material, wherein the waveguide core includes at least one space arranged lengthwise along the waveguide core that is void of the dielectric material; and a conductive layer arranged around the waveguide core.
    Type: Application
    Filed: September 30, 2016
    Publication date: June 6, 2019
    Inventors: Adel A. Elsherbini, Sasha N. Oster, Georgios C. Dogiamis, Telesphor Kamgaing, Shawna M. Liff, Aleksandar Aleksov, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 10263312
    Abstract: A method of making a waveguide ribbon that includes a plurality of waveguides comprises joining a first sheet of dielectric material to a first conductive sheet of conductive material, patterning the first sheet of dielectric material to form a plurality of dielectric waveguide cores on the first conductive sheet, and coating the dielectric waveguide cores with substantially the same conductive material as the conductive sheet to form the plurality of waveguides.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 16, 2019
    Assignee: Intel Corporation
    Inventors: Sasha N. Oster, Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler