Patents by Inventor Richard M. Swanson

Richard M. Swanson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197877
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 22, 2023
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 11605750
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: March 14, 2023
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Publication number: 20210249551
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 12, 2021
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10957809
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: March 23, 2021
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10903786
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 26, 2021
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Denis De Ceuster, Vikas Desai, Douglas H. Rose, David D. Smith, Neil Kaminar
  • Publication number: 20200091366
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10490685
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 26, 2019
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Publication number: 20190131477
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 2, 2019
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Publication number: 20190109560
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Applicant: SunPower Corporation
    Inventors: Richard M. SWANSON, Denis DE CEUSTER, Vikas DESAI, Douglas H. ROSE, David D. SMITH, Neil KAMINAR
  • Patent number: 10170657
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 1, 2019
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10164567
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: December 25, 2018
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Denis De Ceuster, Vikas Desai, Douglas H. Rose, David D. Smith, Neil Kaminar
  • Patent number: 9774294
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: September 26, 2017
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Denis De Ceuster, Vikas Desai, Douglas H. Rose, David D. Smith, Neil Kaminar
  • Publication number: 20170047888
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Application
    Filed: August 18, 2016
    Publication date: February 16, 2017
    Applicant: SunPower Corporation
    Inventors: Richard M. SWANSON, Denis DE CEUSTER, Vikas DESAI, Douglas H. ROSE, David D. SMITH, Neil KAMINAR
  • Publication number: 20170033248
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 2, 2017
    Applicant: SunPower Corporation
    Inventors: Richard M. SWANSON, Denis DE CEUSTER, Vikas DESAI, Douglas H. ROSE, David D. SMITH, Neil KAMINAR
  • Publication number: 20160071996
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: November 19, 2015
    Publication date: March 10, 2016
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 9224902
    Abstract: A silicon solar cell having a silicon substrate includes p-type and n-type emitters on a surface of the substrate, the emitters being doped nano-particles of silicon. To reduce high interface recombination at the substrate surface, the nano-particle emitters are preferably formed over a thin interfacial tunnel oxide layer on the surface of the substrate.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: December 29, 2015
    Assignee: SunPower Corporation
    Inventor: Richard M. Swanson
  • Patent number: 9219173
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: December 22, 2015
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Publication number: 20150288328
    Abstract: In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 8, 2015
    Applicant: SunPower Corporation
    Inventors: Richard M. SWANSON, Denis DE CEUSTER, Vikas DESAI, Douglas H. ROSE, David D. SMITH, Neil KAMINAR
  • Publication number: 20150243803
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 27, 2015
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 9054255
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: June 9, 2015
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis