Patents by Inventor Richard S. Roy

Richard S. Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9966130
    Abstract: An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: May 8, 2018
    Assignee: MIE Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Robert Rogenmoser, Damodar R. Thummalapally
  • Publication number: 20170301395
    Abstract: An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 19, 2017
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Robert Rogenmoser, Damodar R. Thummalapally
  • Patent number: 9741428
    Abstract: An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: August 22, 2017
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Robert Rogenmoser, Damodar R. Thummalapally
  • Publication number: 20160336056
    Abstract: A dynamic random access memory (DRAM) can include at least one DRAM cell array, comprising a plurality of DRAM cells, each including a storage capacitor and access transistor; a body bias control circuit configured to generate body bias voltage from a bias supply voltage, the body bias voltage being different from power supply voltages of the DRAM; and peripheral circuits formed in the same substrate as the at least one DRAM array, the peripheral circuits comprising deeply depleted channel (DDC) transistors having bodies coupled to receive the body bias voltage, each DDC transistor having a screening region of a first conductivity type formed below a substantially undoped channel region.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Inventors: Lawrence T. Clark, Lucian Shifren, Richard S. Roy
  • Patent number: 9449967
    Abstract: A semiconductor circuit can include a plurality of arrays of transistors having differing characteristics and operating at low voltages and currents. A drain line drive signal may provide a potential to a drain line to which a selected transistor is connected. A row of drain mux circuits can provide reduced leakage current on the drain line drive signal so that more accurate current measurements may be made. A gate line drive signal may provide a potential to a gate line to which the selected transistor is connected. A column of gate line mux circuits can provide a gate line low drive signal to unselected transistors to reduce leakage current in unselected transistors so that more accurate drain current measurements may be made to the selected transistor.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 20, 2016
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Richard S. Roy, Samuel Leshner
  • Patent number: 9431068
    Abstract: A dynamic random access memory (DRAM) can include at least one DRAM cell array, comprising a plurality of DRAM cells, each including a storage capacitor and access transistor; a body bias control circuit configured to generate body bias voltage from a bias supply voltage, the body bias voltage being different from power supply voltages of the DRAM; and peripheral circuits formed in the same substrate as the at least one DRAM array, the peripheral circuits comprising deeply depleted channel (DDC) transistors having bodies coupled to receive the body bias voltage, each DDC transistor having a screening region of a first conductivity type formed below a substantially undoped channel region.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: August 30, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Lucian Shifren, Richard S. Roy
  • Publication number: 20160232964
    Abstract: An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
    Type: Application
    Filed: April 21, 2016
    Publication date: August 11, 2016
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Robert Rogenmoser, Damodar R. Thummalapally
  • Patent number: 9362291
    Abstract: An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
    Type: Grant
    Filed: August 9, 2014
    Date of Patent: June 7, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Robert Rogenmoser, Damodar R. Thummalapally
  • Patent number: 9342471
    Abstract: A memory device that includes an input interface that receives instructions and input data on a first plurality of serial links. The instructions and input data are deserialized on the memory device, and are provided to a memory controller. The memory controller initiates accesses to a memory core in response to the received instructions. The memory core includes a plurality of memory partitions, which are accessed in a cyclic and overlapping manner. This allows each memory partition to operate at a slower frequency than the serial links, while properly servicing the received instructions. Accesses to the memory device are performed in a synchronous manner, wherein each access exhibits a known fixed latency.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: May 17, 2016
    Assignee: MoSys, Inc.
    Inventors: Michael J. Miller, Richard S. Roy
  • Patent number: 9297850
    Abstract: A memory test method is disclosed that can include providing at least one first switch of at least one test element coupled to a first memory section between a first node within a tested section and an intermediate node, coupling a test switch of the test element between the intermediate node and a forced voltage node, and coupling a second switch of the test element between the intermediate node and a second node; wherein the forced voltage node receives a forced voltage substantially the same as a voltage applied to the second node, and the second node is coupled to at least a second memory section.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: March 29, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Richard S. Roy
  • Patent number: 9117746
    Abstract: Porting a first integrated circuit design targeted for implementation in a first semiconductor manufacturing process, and implementing a second circuit design in a second semiconductor manufacturing process wherein the electrical performance of the second integrated circuit meets or exceeds the requirements of the first integrated circuit design even if the threshold voltage targets of the second integrated circuit design are different from those of the first integrated circuit design; and wherein physical layouts, and in particular the gate-widths and gate-lengths of the transistors, of the first and second integrated circuit designs are the same or substantially the same. The second integrated circuit design, when fabricated in the second semiconductor manufacturing process and then operated, experiences less off-state transistor leakage current than does the first integrated circuit design, when fabricated in the first semiconductor manufacturing process, and then operated.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: August 25, 2015
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Samuel Leshner
  • Patent number: 9030894
    Abstract: A memory system includes multiple (N) memory banks and multiple (M) ports, wherein N is greater than or equal to M. Each of the memory banks is coupled to each of the ports. Access requests are transmitted simultaneously on each of the ports. However, each of the simultaneous access requests specifies a different memory bank. Each memory bank monitors the access requests on the ports, and determines whether any of the access requests specify the memory bank. Upon determining that an access request specifies the memory bank, the memory bank performs an access to an array of single-port memory cells. Simultaneous accesses are performed in multiple memory banks, providing a bandwidth equal to the bandwidth of one memory bank times the number of ports. An additional level of hierarchy may be provided, which allows further multiplication of the number of simultaneously accessed ports, with minimal area overhead.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: May 12, 2015
    Assignee: MoSys, Inc.
    Inventors: Richard S. Roy, Dipak Kumar Sikdar
  • Patent number: 8994415
    Abstract: A clock buffer circuit can include a low voltage drive circuit that receives a clock signal and provides a low voltage drive at a first power supply potential to a load. A boost drive circuit can provide a high voltage drive at a second power supply potential greater than the first power supply potential to the load. The boost drive circuit can provide the high voltage drive in response to a pulse signal generated in response to a transition of a clock input signal. A pulse generator circuit may generate the pulse signal to have a predetermined width to enable the high voltage drive until the load is charged essentially to the first power supply potential.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 31, 2015
    Assignee: SuVolta, Inc.
    Inventor: Richard S. Roy
  • Patent number: 8988153
    Abstract: A low voltage ring oscillator circuit can have a frequency variation that depends on process variations of insulated gate field effect transistors (IGFETs) of a first conductivity type without substantially being affected by process variations to IGFETs of a second conductivity type. A ring oscillator stage may include an inverter including only IGFETs of the first conductivity type. The inverter may be coupled to a boot circuit that boosts the gate potential of a first IGFET of the first conductivity type with a timing such that IGFETs of the second conductivity type in the boot circuit do not affect the frequency variations of the ring oscillator circuit.
    Type: Grant
    Filed: March 9, 2013
    Date of Patent: March 24, 2015
    Assignee: SuVolta, Inc.
    Inventor: Richard S. Roy
  • Patent number: 8901747
    Abstract: A chip layout for a high speed semiconductor device is disclosed. The chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. A serial interface is centrally located to reduce latency, power and propagation delays. Stacked die that contain one or more devices with the chip layout are characterized by having improved latency, bandwidth, power consumption, and propagation delays.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 2, 2014
    Assignee: MoSys, Inc.
    Inventors: Michael J. Miller, Mark Baumann, Richard S. Roy
  • Patent number: 8890332
    Abstract: A chip layout for a high speed semiconductor device is disclosed. The chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. A serial interface is centrally located to reduce latency, power and propagation delays. Stacked die that contain one or more devices with the chip layout are characterized by having improved latency, bandwidth, power consumption, and propagation delays.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 18, 2014
    Assignee: MoSys, Inc.
    Inventors: Michael J. Miller, Mark William Baumann, Richard S. Roy
  • Patent number: 8837230
    Abstract: A memory circuit device having at least one test element interconnecting memory sections can include at least one first switch coupled to a first memory section between a first node within a tested section and an intermediate node, a test switch coupled between the intermediate node and a forced voltage node, and a second switch coupled between the intermediate node and a second node; wherein the forced voltage node is selectively coupled to receive a forced voltage substantially the same as a voltage applied to the second node, and the second node is coupled to at least a second memory section.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: September 16, 2014
    Assignee: Suvolta, Inc.
    Inventors: Lawrence T. Clark, Richard S. Roy
  • Patent number: 8811068
    Abstract: An integrated circuit can include SRAM cells, with pull-up transistors, pull-down transistors, and pass-gate transistors having a screening region positioned a distance below the gate and separated from the gate by a semiconductor layer. The screening region has a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer. The screening region can provide an enhanced body coefficient for the pull-up transistors to increase a read static noise margin of the SRAM cell when a bias voltage is applied to the screening region. Related methods are also disclosed.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: August 19, 2014
    Assignee: Suvolta, Inc.
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Robert Rogenmoser, Damodar R. Thummalapally
  • Patent number: 8806395
    Abstract: Porting a first integrated circuit design targeted for implementation in a first semiconductor manufacturing process, and implementing a second circuit design in a second semiconductor manufacturing process wherein the electrical performance of the second integrated circuit meets or exceeds the requirements of the first integrated circuit design even if the threshold voltage targets of the second integrated circuit design are different from those of the first integrated circuit design; and wherein physical layouts, and in particular the gate-widths and gate-lengths of the transistors, of the first and second integrated circuit designs are the same or substantially the same. The second integrated circuit design, when fabricated in the second semiconductor manufacturing process and then operated, experiences less off-state transistor leakage current than does the first integrated circuit design, when fabricated in the first semiconductor manufacturing process, and then operated.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: August 12, 2014
    Assignee: SuVolta, Inc.
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Samuel Leshner
  • Publication number: 20140119099
    Abstract: A dynamic random access memory (DRAM) can include at least one DRAM cell array, comprising a plurality of DRAM cells, each including a storage capacitor and access transistor; a body bias control circuit configured to generate body bias voltage from a bias supply voltage, the body bias voltage being different from power supply voltages of the DRAM; and peripheral circuits formed in the same substrate as the at least one DRAM array, the peripheral circuits comprising deeply depleted channel (DDC) transistors having bodies coupled to receive the body bias voltage, each DDC transistor having a screening region of a first conductivity type formed below a substantially undoped channel region.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: Suvolta, Inc.
    Inventors: Lawrence T. Clark, Lucian Shifren, Richard S. Roy